Import 1.3.16
[davej-history.git] / include / asm-i386 / pgtable.h
blob7ea1845bcc89f92e079d685aee35572bf64cab99
1 #ifndef _I386_PGTABLE_H
2 #define _I386_PGTABLE_H
4 /*
5 * Define CONFIG_PENTIUM_MM if you want the 4MB page table optimizations.
6 * This works only on a intel Pentium.
7 */
8 #define CONFIG_PENTIUM_MM 1
11 * The Linux memory management assumes a three-level page table setup. On
12 * the i386, we use that, but "fold" the mid level into the top-level page
13 * table, so that we physically have the same two-level page table as the
14 * i386 mmu expects.
16 * This file contains the functions and defines necessary to modify and use
17 * the i386 page table tree.
20 /* PMD_SHIFT determines the size of the area a second-level page table can map */
21 #define PMD_SHIFT 22
22 #define PMD_SIZE (1UL << PMD_SHIFT)
23 #define PMD_MASK (~(PMD_SIZE-1))
25 /* PGDIR_SHIFT determines what a third-level page table entry can map */
26 #define PGDIR_SHIFT 22
27 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
28 #define PGDIR_MASK (~(PGDIR_SIZE-1))
31 * entries per page directory level: the i386 is two-level, so
32 * we don't really have any PMD directory physically.
34 #define PTRS_PER_PTE 1024
35 #define PTRS_PER_PMD 1
36 #define PTRS_PER_PGD 1024
38 /* Just any arbitrary offset to the start of the vmalloc VM area: the
39 * current 8MB value just means that there will be a 8MB "hole" after the
40 * physical memory until the kernel virtual memory starts. That means that
41 * any out-of-bounds memory accesses will hopefully be caught.
42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43 * area for the same reason. ;)
45 #define VMALLOC_OFFSET (8*1024*1024)
46 #define VMALLOC_START ((high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
47 #define VMALLOC_VMADDR(x) (TASK_SIZE + (unsigned long)(x))
50 * The 4MB page is guessing.. Detailed in the infamous "Chapter H"
51 * of the Pentium details, but assuming intel did the straigtforward
52 * thing, this bit set in the page directory entry just means that
53 * the page directory entry points directly to a 4MB-aligned block of
54 * memory.
56 #define _PAGE_PRESENT 0x001
57 #define _PAGE_RW 0x002
58 #define _PAGE_USER 0x004
59 #define _PAGE_PCD 0x010
60 #define _PAGE_ACCESSED 0x020
61 #define _PAGE_DIRTY 0x040
62 #define _PAGE_4M 0x080/* 4 MB page, Pentium+.. */
63 #define _PAGE_COW 0x200/* implemented in software (one of the AVL bits) */
65 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
66 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
68 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
69 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
70 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_COW)
71 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
72 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
75 * The i386 can't do page protection for execute, and considers that the same are read.
76 * Also, write permissions imply read permissions. This is the closest we can get..
78 #define __P000 PAGE_NONE
79 #define __P001 PAGE_READONLY
80 #define __P010 PAGE_COPY
81 #define __P011 PAGE_COPY
82 #define __P100 PAGE_READONLY
83 #define __P101 PAGE_READONLY
84 #define __P110 PAGE_COPY
85 #define __P111 PAGE_COPY
87 #define __S000 PAGE_NONE
88 #define __S001 PAGE_READONLY
89 #define __S010 PAGE_SHARED
90 #define __S011 PAGE_SHARED
91 #define __S100 PAGE_READONLY
92 #define __S101 PAGE_READONLY
93 #define __S110 PAGE_SHARED
94 #define __S111 PAGE_SHARED
97 * Define this if things work differently on a i386 and a i486:
98 * it will (on a i486) warn about kernel memory accesses that are
99 * done without a 'verify_area(VERIFY_WRITE,..)'
101 #undef CONFIG_TEST_VERIFY_AREA
103 /* page table for 0-4MB for everybody */
104 externunsigned long pg0[1024];
105 /* zero page used for unitialized stuff */
106 externunsigned long empty_zero_page[1024];
109 * BAD_PAGETABLE is used when we need a bogus page-table, while
110 * BAD_PAGE is used for a bogus page.
112 * ZERO_PAGE is a global shared page that is always zero: used
113 * for zero-mapped memory areas etc..
115 extern pte_t __bad_page(void);
116 extern pte_t *__bad_pagetable(void);
118 #define BAD_PAGETABLE __bad_pagetable()
119 #define BAD_PAGE __bad_page()
120 #define ZERO_PAGE ((unsigned long) empty_zero_page)
122 /* number of bits that fit into a memory pointer */
123 #define BITS_PER_PTR (8*sizeof(unsigned long))
125 /* to align the pointer to a pointer address */
126 #define PTR_MASK (~(sizeof(void*)-1))
128 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
129 /* 64-bit machines, beware! SRB. */
130 #define SIZEOF_PTR_LOG2 2
132 /* to find an entry in a page-table */
133 #define PAGE_PTR(address) \
134 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
136 /* to set the page-dir */
137 #define SET_PAGE_DIR(tsk,pgdir) \
138 do { \
139 (tsk)->tss.cr3 = (unsigned long) (pgdir); \
140 if ((tsk) == current) \
141 __asm__ __volatile__("movl %0,%%cr3": :"a" ((tsk)->tss.cr3)); \
142 } while (0)
144 extern inlineintpte_none(pte_t pte) {return!pte_val(pte); }
145 extern inlineintpte_present(pte_t pte) {returnpte_val(pte) & _PAGE_PRESENT; }
146 extern inlineintpte_inuse(pte_t *ptep) {return mem_map[MAP_NR(ptep)] !=1; }
147 extern inlinevoidpte_clear(pte_t *ptep) {pte_val(*ptep) =0; }
148 extern inlinevoidpte_reuse(pte_t * ptep)
150 if(!(mem_map[MAP_NR(ptep)] & MAP_PAGE_RESERVED))
151 mem_map[MAP_NR(ptep)]++;
154 extern inlineintpmd_none(pmd_t pmd) {return!pmd_val(pmd); }
155 extern inlineintpmd_bad(pmd_t pmd) {return(pmd_val(pmd) & ~PAGE_MASK) != _PAGE_TABLE ||pmd_val(pmd) > high_memory; }
156 extern inlineintpmd_present(pmd_t pmd) {returnpmd_val(pmd) & _PAGE_PRESENT; }
157 #ifdef CONFIG_PENTIUM_MM
158 extern inlineintpmd_inuse(pmd_t *pmdp) {return(pmd_val(*pmdp) & _PAGE_4M) !=0; }
159 #else
160 extern inlineintpmd_inuse(pmd_t *pmdp) {return0; }
161 #endif
162 extern inlinevoidpmd_clear(pmd_t * pmdp) {pmd_val(*pmdp) =0; }
163 extern inlinevoidpmd_reuse(pmd_t * pmdp) { }
166 * The "pgd_xxx()" functions here are trivial for a folded two-level
167 * setup: the pgd is never bad, and a pmd always exists (as it's folded
168 * into the pgd entry)
170 extern inlineintpgd_none(pgd_t pgd) {return0; }
171 extern inlineintpgd_bad(pgd_t pgd) {return0; }
172 extern inlineintpgd_present(pgd_t pgd) {return1; }
173 extern inlineintpgd_inuse(pgd_t * pgdp) {return mem_map[MAP_NR(pgdp)] !=1; }
174 extern inlinevoidpgd_clear(pgd_t * pgdp) { }
175 extern inlinevoidpgd_reuse(pgd_t * pgdp)
177 if(!(mem_map[MAP_NR(pgdp)] & MAP_PAGE_RESERVED))
178 mem_map[MAP_NR(pgdp)]++;
182 * The following only work if pte_present() is true.
183 * Undefined behaviour if not..
185 extern inlineintpte_read(pte_t pte) {returnpte_val(pte) & _PAGE_USER; }
186 extern inlineintpte_write(pte_t pte) {returnpte_val(pte) & _PAGE_RW; }
187 extern inlineintpte_exec(pte_t pte) {returnpte_val(pte) & _PAGE_USER; }
188 extern inlineintpte_dirty(pte_t pte) {returnpte_val(pte) & _PAGE_DIRTY; }
189 extern inlineintpte_young(pte_t pte) {returnpte_val(pte) & _PAGE_ACCESSED; }
190 extern inlineintpte_cow(pte_t pte) {returnpte_val(pte) & _PAGE_COW; }
192 extern inline pte_t pte_wrprotect(pte_t pte) {pte_val(pte) &= ~_PAGE_RW;return pte; }
193 extern inline pte_t pte_rdprotect(pte_t pte) {pte_val(pte) &= ~_PAGE_USER;return pte; }
194 extern inline pte_t pte_exprotect(pte_t pte) {pte_val(pte) &= ~_PAGE_USER;return pte; }
195 extern inline pte_t pte_mkclean(pte_t pte) {pte_val(pte) &= ~_PAGE_DIRTY;return pte; }
196 extern inline pte_t pte_mkold(pte_t pte) {pte_val(pte) &= ~_PAGE_ACCESSED;return pte; }
197 extern inline pte_t pte_uncow(pte_t pte) {pte_val(pte) &= ~_PAGE_COW;return pte; }
198 extern inline pte_t pte_mkwrite(pte_t pte) {pte_val(pte) |= _PAGE_RW;return pte; }
199 extern inline pte_t pte_mkread(pte_t pte) {pte_val(pte) |= _PAGE_USER;return pte; }
200 extern inline pte_t pte_mkexec(pte_t pte) {pte_val(pte) |= _PAGE_USER;return pte; }
201 extern inline pte_t pte_mkdirty(pte_t pte) {pte_val(pte) |= _PAGE_DIRTY;return pte; }
202 extern inline pte_t pte_mkyoung(pte_t pte) {pte_val(pte) |= _PAGE_ACCESSED;return pte; }
203 extern inline pte_t pte_mkcow(pte_t pte) {pte_val(pte) |= _PAGE_COW;return pte; }
206 * Conversion functions: convert a page and protection to a page entry,
207 * and a page entry and page directory to the page they refer to.
209 extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
210 { pte_t pte;pte_val(pte) = page |pgprot_val(pgprot);return pte; }
212 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
213 {pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) |pgprot_val(newprot);return pte; }
215 extern inlineunsigned longpte_page(pte_t pte)
216 {returnpte_val(pte) & PAGE_MASK; }
218 extern inlineunsigned longpmd_page(pmd_t pmd)
219 {returnpmd_val(pmd) & PAGE_MASK; }
221 /* to find an entry in a page-table-directory */
222 extern inline pgd_t *pgd_offset(struct task_struct * tsk,unsigned long address)
224 return(pgd_t *) tsk->tss.cr3 + (address >> PGDIR_SHIFT);
227 /* Find an entry in the second-level page table.. */
228 extern inline pmd_t *pmd_offset(pgd_t * dir,unsigned long address)
230 return(pmd_t *) dir;
233 /* Find an entry in the third-level page table.. */
234 extern inline pte_t *pte_offset(pmd_t * dir,unsigned long address)
236 return(pte_t *)pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE -1));
240 * Allocate and free page tables. The xxx_kernel() versions are
241 * used to allocate a kernel page table - this turns on ASN bits
242 * if any, and marks the page tables reserved.
244 extern inlinevoidpte_free_kernel(pte_t * pte)
246 mem_map[MAP_NR(pte)] =1;
247 free_page((unsigned long) pte);
250 extern inline pte_t *pte_alloc_kernel(pmd_t * pmd,unsigned long address)
252 address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE -1);
253 if(pmd_none(*pmd)) {
254 pte_t * page = (pte_t *)get_free_page(GFP_KERNEL);
255 if(pmd_none(*pmd)) {
256 if(page) {
257 pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page;
258 mem_map[MAP_NR(page)] = MAP_PAGE_RESERVED;
259 return page + address;
261 pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
262 return NULL;
264 free_page((unsigned long) page);
266 if(pmd_bad(*pmd)) {
267 printk("Bad pmd in pte_alloc: %08lx\n",pmd_val(*pmd));
268 pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
269 return NULL;
271 return(pte_t *)pmd_page(*pmd) + address;
275 * allocating and freeing a pmd is trivial: the 1-entry pmd is
276 * inside the pgd, so has no extra memory associated with it.
278 extern inlinevoidpmd_free_kernel(pmd_t * pmd)
280 pmd_val(*pmd) =0;
283 extern inline pmd_t *pmd_alloc_kernel(pgd_t * pgd,unsigned long address)
285 return(pmd_t *) pgd;
288 extern inlinevoidpte_free(pte_t * pte)
290 free_page((unsigned long) pte);
293 extern inline pte_t *pte_alloc(pmd_t * pmd,unsigned long address)
295 address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE -1);
296 if(pmd_none(*pmd)) {
297 pte_t * page = (pte_t *)get_free_page(GFP_KERNEL);
298 if(pmd_none(*pmd)) {
299 if(page) {
300 pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page;
301 return page + address;
303 pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
304 return NULL;
306 free_page((unsigned long) page);
308 if(pmd_bad(*pmd)) {
309 printk("Bad pmd in pte_alloc: %08lx\n",pmd_val(*pmd));
310 pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
311 return NULL;
313 return(pte_t *)pmd_page(*pmd) + address;
317 * allocating and freeing a pmd is trivial: the 1-entry pmd is
318 * inside the pgd, so has no extra memory associated with it.
320 extern inlinevoidpmd_free(pmd_t * pmd)
322 pmd_val(*pmd) =0;
325 extern inline pmd_t *pmd_alloc(pgd_t * pgd,unsigned long address)
327 return(pmd_t *) pgd;
330 extern inlinevoidpgd_free(pgd_t * pgd)
332 free_page((unsigned long) pgd);
335 extern inline pgd_t *pgd_alloc(void)
337 return(pgd_t *)get_free_page(GFP_KERNEL);
340 extern pgd_t swapper_pg_dir[1024];
343 * The i386 doesn't have any external MMU info: the kernel page
344 * tables contain all the necessary information.
346 extern inlinevoidupdate_mmu_cache(struct vm_area_struct * vma,
347 unsigned long address, pte_t pte)
351 #define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
352 #define SWP_OFFSET(entry) ((entry) >> 8)
353 #define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
355 #endif/* _I386_PAGE_H */
close