Skip to content

Latest commit

 

History

History
133 lines (95 loc) · 3.52 KB

96.unique-binary-search-trees.md

File metadata and controls

133 lines (95 loc) · 3.52 KB

题目地址(96. 不同的二叉搜索树)

https://leetcode-cn.com/problems/unique-binary-search-trees/

题目描述

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 示例: 输入: 3 输出: 5 解释: 给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3 

前置知识

  • 二叉搜索树
  • 分治

公司

  • 阿里
  • 腾讯
  • 百度
  • 字节

岗位信息

  • 腾讯(广州)- 安卓 - 社招 - 三面

思路

这是一个经典的使用分治思路的题目。

对于数字 n ,我们可以 1- n 这样的离散整数分成左右两部分。我们不妨设其分别为 A 和 B。那么问题转化为 A 和 B 所能组成的 BST 的数量的笛卡尔积。而对于 A 和 B 以及原问题除了规模,没有不同,这不就是分治思路么?至于此,我们只需要考虑边界即可,边界很简单就是 n 小于等于 1 的时候,我们返回 1。

具体来说:

  • 生成一个[1:n + 1] 的数组
  • 我们遍历一次数组,对于每一个数组项,我们执行以下逻辑
  • 对于每一项,我们都假设其是断点。断点左侧的是 A,断点右侧的是 B。
  • 那么 A 就是 i - 1 个数, 那么 B 就是 n - i 个数
  • 我们递归,并将 A 和 B 的结果相乘即可。

其实我们发现,题目的答案只和 n 有关,和具体 n 个数的具体组成,只要是有序数组即可。

题目没有明确 n 的取值范围,我们试一下暴力递归。

代码(Python3):

classSolution: defnumTrees(self, n: int) ->int: ifn<=1: return1res=0foriinrange(1, n+1): res+=self.numTrees(i-1) *self.numTrees(n-i) returnres

上面的代码会超时,并没有栈溢出,因此我们考虑使用 hashmap 来优化,代码见下方代码区。

关键点解析

  • 分治法
  • 笛卡尔积
  • 记忆化递归

代码

语言支持:Python3, CPP

Python3 Code:

classSolution: visited=dict() defnumTrees(self, n: int) ->int: ifninself.visited: returnself.visited.get(n) ifn<=1: return1res=0foriinrange(1, n+1): res+=self.numTrees(i-1) *self.numTrees(n-i) self.visited[n] =resreturnres

CPP Code:

classSolution { vector<int> visited; intdp(int n) { if (visited[n]) return visited[n]; int ans = 0; for (int i = 0; i < n; ++i) ans += dp(i) * dp(n - i - 1); return visited[n] = ans; } public:intnumTrees(int n) { visited.assign(n + 1, 0); visited[0] = 1; returndp(n); } };

复杂度分析

  • 时间复杂度:一层循环是 N,另外递归深度是 N,因此总的时间复杂度是 $O(N^2)$
  • 空间复杂度:递归的栈深度和 visited 的大小都是 N,因此总的空间复杂度为 $O(N)$

相关题目

更多题解可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 30K star 啦。

关注公众号力扣加加,努力用清晰直白的语言还原解题思路,并且有大量图解,手把手教你识别套路,高效刷题。

close