使用 Promise

Promise 是一个对象,它代表了一个异步操作的最终完成或者失败。因为大多数人仅仅是使用已创建的 Promise 实例对象,所以本教程将首先说明怎样使用 Promise,再说明如何创建 Promise。

本质上 Promise 是一个函数返回的对象,我们可以在它上面绑定回调函数,这样我们就不需要在一开始把回调函数作为参数传入这个函数了。

假设现在有一个名为 createAudioFileAsync() 的函数,它接收一些配置和两个回调函数,然后异步地生成音频文件。一个回调函数在文件成功创建时被调用,另一个则在出现异常时被调用。

以下为使用 createAudioFileAsync() 的示例:

js
// 成功的回调函数 function successCallback(result) { console.log("音频文件创建成功:" + result); } // 失败的回调函数 function failureCallback(error) { console.log("音频文件创建失败:" + error); } createAudioFileAsync(audioSettings, successCallback, failureCallback); 

如果重写 createAudioFileAsync() 为返回 Promise 的形式,你可以把回调函数附加到它上面:

js
createAudioFileAsync(audioSettings).then(successCallback, failureCallback); 

这种形式有若干优点,下面我们将会逐一讨论。

链式调用

连续执行两个或者多个异步操作是一个常见的需求,在上一个操作执行成功之后,开始下一个的操作,并带着上一步操作所返回的结果。在旧的回调风格中,这种操作会导致经典的回调地狱

js
doSomething(function (result) { doSomethingElse(result, function (newResult) { doThirdThing(newResult, function (finalResult) { console.log(`得到最终结果:${finalResult}`); }, failureCallback); }, failureCallback); }, failureCallback); 

有了 Promise,我们就可以通过一个 Promise 链来解决这个问题。这就是 Promise API 的优势,因为回调函数是附加到返回的 Promise 对象上的,而不是传入一个函数中。

见证奇迹的时刻:then() 函数会返回一个和原来不同的新的 Promise

js
const promise = doSomething(); const promise2 = promise.then(successCallback, failureCallback); 

第二个 promise(promise2)不仅表示 doSomething() 函数的完成,也代表了你传入的 successCallback 或者 failureCallback 的完成,这两个函数也可以是返回 Promise 对象的异步函数。这样的话,在 promise2 上新增的排在该 promise 后面的回调函数会通过 successCallbackfailureCallback 返回。

备注: 如果你想要一个可以操作的示例,你可以使用下面的模板来创建任何返回 Promise 的函数:

js
function doSomething() { return new Promise((resolve) => { setTimeout(() => { // 在完成 Promise 之前的其他操作 console.log("完成了一些事情"); // promise 的兑现值 resolve("https://example.com/"); }, 200); }); } 

该实现会在下面的在旧式回调 API 中创建 Promise部分讨论。

就像这样,你可以创建一个更长的处理链,其中的每个 Promise 都代表了链中的一个异步过程的完成。此外,then 的参数是可选的,catch(failureCallback) 等同于 then(null, failureCallback)——所以如果你的错误处理代码对所有步骤都是一样的,你可以把它附加到链的末尾:

js
doSomething() .then(function (result) { return doSomethingElse(result); }) .then(function (newResult) { return doThirdThing(newResult); }) .then(function (finalResult) { console.log(`得到最终结果:${finalResult}`); }) .catch(failureCallback); 

你或许会看到这种形式的箭头函数

js
doSomething() .then((result) => doSomethingElse(result)) .then((newResult) => doThirdThing(newResult)) .then((finalResult) => { console.log(`得到最终结果:${finalResult}`); }) .catch(failureCallback); 

备注: 箭头函数表达式可以有隐式返回值;所以,() => x() => { return x; } 的简写。

doSomethingElsedoThirdThing 可以返回任何值——如果它们返回的是 Promise,那么会首先等待这个 Promise 的敲定,然后下一个回调函数会接收到它的兑现值,而不是 Promise 本身。在 then 回调中始终返回 Promise 是非常重要的,即使 Promise 总是兑现为 undefined。如果上一个处理器启动了一个 Promise 但并没有返回它,那么就没有办法再追踪它的敲定状态了,这个 Promise 就是“漂浮”的。

js
doSomething() .then((url) => { // fetch(url) 前缺少 `return` 关键字。 fetch(url); }) .then((result) => { // result 是 undefined,因为上一个处理器没有返回任何东西。 // 无法得知 fetch() 的返回值,也无法知道它是否成功。 }); 

通过返回 fetch 调用的结果(一个 Promise),我们既可以追踪它的完成状态,也可以在它完成时接收到它的值。

js
doSomething() .then((url) => { // 添加 `return` 关键字 return fetch(url); }) .then((result) => { // result 是一个 Response 对象 }); 

如果有竞态条件的话,使 Promise 漂浮的情况会更糟——如果上一个处理器的 Promise 没有返回,那么下一个 then 处理器会被提前调用,而它读取的任何值都可能是不完整的。

js
const listOfIngredients = []; doSomething() .then((url) => { // fetch(url) 前缺少 `return` 关键字。 fetch(url) .then((res) => res.json()) .then((data) => { listOfIngredients.push(data); }); }) .then(() => { console.log(listOfIngredients); // listOfIngredients 永远为 [],因为 fetch 请求还没有完成。 }); 

因此,一个经验法则是,每当你的操作遇到一个 Promise,就返回它,并把它的处理推迟到下一个 then 处理器中。

js
const listOfIngredients = []; doSomething() .then((url) => { // fetch 调用前面现在包含了 `return` 关键字。 return fetch(url) .then((res) => res.json()) .then((data) => { listOfIngredients.push(data); }); }) .then(() => { console.log(listOfIngredients); // listOfIngredients 现在将包含来自 fetch 调用的数据。 }); 

更加好的解决方法是,你可以将嵌套链扁平化为单链,这样更简单,也更容易处理错误。具体细节将在下面的嵌套部分讨论。

js
doSomething() .then((url) => fetch(url)) .then((res) => res.json()) .then((data) => { listOfIngredients.push(data); }) .then(() => { console.log(listOfIngredients); }); 

使用 async/await 可以帮助你编写更直观、更类似同步代码的代码。下面是使用 async/await 的相同示例:

js
async function logIngredients() { const url = await doSomething(); const res = await fetch(url); const data = await res.json(); listOfIngredients.push(data); console.log(listOfIngredients); } 

请注意,除了前面的 await 关键字外,这段代码看起来与同步代码一模一样。唯一的折衷是,可能很容易忘记 await 关键字,这只能在出现类型不匹配(例如试图将承诺作为值使用)时才能解决。

async/await 基于 promise,例如,doSomething() 与之前的函数相同,因此从 promise 到 async/await 所需的重构工作微乎其微。有关 async/await 语法的更多信息,请参阅异步函数await 参考。

备注: async/await 的并发语义与普通 Promise 链相同。异步函数中的 await 不会停止整个程序,只会停止依赖其值的部分,因此在 await 挂起时,其他异步任务仍可运行。

错误处理

你或许还有印象,在之前的回调地狱示例中,有 3 次 failureCallback 的调用,而在 Promise 链中只有尾部的一次调用。

js
doSomething() .then((result) => doSomethingElse(result)) .then((newResult) => doThirdThing(newResult)) .then((finalResult) => console.log(`得到最终结果:${finalResult}`)) .catch(failureCallback); 

通常,一遇到异常抛出,浏览器就会顺着 Promise 链寻找下一个 onRejected 失败回调函数或者由 .catch() 指定的回调函数。这和以下同步代码的工作原理(执行过程)非常相似。

js
try { let result = syncDoSomething(); let newResult = syncDoSomethingElse(result); let finalResult = syncDoThirdThing(newResult); console.log(`得到最终结果:${finalResult}`); } catch (error) { failureCallback(error); } 

这种异步代码的对称性在 async/await 语法中达到了极致:

js
async function foo() { try { const result = await doSomething(); const newResult = await doSomethingElse(result); const finalResult = await doThirdThing(newResult); console.log(`得到最终结果:${finalResult}`); } catch (error) { failureCallback(error); } } 

嵌套

对比上述涉及 listOfIngredients 的两个例子,第一个例子中有一个 Promise 链嵌套在另一个 then() 处理器的返回值中;而第二个例子则是完全扁平化的链。简洁的 Promise 链式编程最好保持扁平化,不要嵌套 Promise,因为嵌套经常会是粗心导致的。

嵌套是一种可以限制 catch 语句的作用域的控制结构写法。明确来说,嵌套的 catch 只会捕获其作用域及以下的错误,而不会捕获链中更高层的错误。如果使用正确,可以实现细粒度的错误恢复。

js
doSomethingCritical() .then((result) => doSomethingOptional() .then((optionalResult) => doSomethingExtraNice(optionalResult)) .catch((e) => {}), ) // 即便可选操作失败了,也会继续执行 .then(() => moreCriticalStuff()) .catch((e) => console.log(`严重失败:${e.message}`)); 

注意,这里的可选操作是嵌套的——缩进并不是原因,而是因为可选操作被外层的 () 括号包裹起来了。

这个内部的 catch 语句仅能捕获到 doSomethingOptional()doSomethingExtraNice() 的失败,并将该错误与外界屏蔽,之后就恢复到 moreCriticalStuff() 继续执行。值得注意的是,如果 doSomethingCritical() 失败,这个错误仅会被最后的(外部)catch 语句捕获到,并不会被内部 catch 吞掉。

async/await 中,这段代码看起来像这样:

js
async function main() { try { const result = await doSomethingCritical(); try { const optionalResult = await doSomethingOptional(result); await doSomethingExtraNice(optionalResult); } catch (e) { // 忽略可选步骤的失败并继续执行。 } await moreCriticalStuff(); } catch (e) { console.error(`严重失败:${e.message}`); } } 

备注: 如果没有复杂的错误处理,则很可能不需要嵌套的 then 处理器。相反,可以使用扁平链,将错误处理逻辑放在最后。

Catch 的后续链式操作

有可能会在一个回调失败之后继续使用链式操作,即,使用一个 catch,这对于在链式操作中抛出一个失败之后,再次进行新的操作会很有用。请阅读下面的例子:

js
new Promise((resolve, reject) => { console.log("初始化"); resolve(); }) .then(() => { throw new Error("有哪里不对了"); console.log("执行「这个」"); }) .catch(() => { console.log("执行「那个」"); }) .then(() => { console.log("执行「这个」,无论前面发生了什么"); }); 

输出结果如下:

初始化 执行「那个」 执行「这个」,无论前面发生了什么 

备注: 并没有输出“执行「这个」”,因为在第一个 then() 中的 throw 语句导致其被拒绝。

async/await 中,这段代码看起来像这样:

js
async function main() { try { await doSomething(); throw new Error("有哪里不对了"); console.log("执行「这个」"); } catch (e) { console.error("执行「那个」"); } console.log("执行「这个」,无论前面发生了什么"); } 

Promise 拒绝事件

当一个 Promise 拒绝事件未被任何处理器处理时,它会冒泡到调用栈的顶部,主机需要将其暴露出来。在 Web 上,当 Promise 被拒绝时,会有下文所述的两个事件之一被派发到全局作用域(通常而言,就是 window;如果是在 web worker 中使用的话,就是 Worker 或者其他基于 worker 的接口)。这两个事件如下所示:

unhandledrejection

当 promise 被拒绝,但没有可用的拒绝处理器时,会派发此事件。

rejectionhandled

当一个被拒绝的 promise 在触发了 unhandledrejection 事件之后才附加处理器时,会派发此事件。

上述两种事件(类型为 PromiseRejectionEvent)都有两个属性,一个是 promise 属性,该属性指向被拒绝的 Promise,另一个是 reason 属性,该属性用来说明 Promise 被拒绝的原因。

因此,我们可以通过以上事件为 Promise 失败时提供补偿处理,也有利于调试 Promise 相关的问题。在每一个上下文中,该处理都是全局的,因此不管源码如何,所有的错误都会在同一个处理函数中被捕捉并处理。

Node.js 中,对拒绝事件的处理稍有不同。你可以通过为 Node.js 的 unhandledRejection 事件添加处理器(注意名称的大小写不同)来捕获未处理的拒绝,就像这样:

js
process.on("unhandledRejection", (reason, promise) => { /* 你可以在这里添加一些代码,以便检查 promise 和 reason */ }); 

对于 Node.js 来说,为了防止错误被记录到控制台(否则默认会发生),添加 process.on() 监听器就足够了;不需要类似浏览器运行时的 preventDefault() 方法这样的等效操作。

然而,如果你添加了 process.on 监听器,但没有在其中添加代码来处理被拒绝的 Promise,那么它们就会被丢弃,而且不会有任何提示。因此,最好在监听器中添加代码来检查每个被拒绝的 Promise,并确保它们不是由于代码错误而导致的。

组合

有四个组合工具可用来并发异步操作:Promise.all()Promise.allSettled()Promise.any()Promise.race()

我们可以同时启动所有操作,再等待它们全部完成,就像这样:

js
Promise.all([func1(), func2(), func3()]).then(([result1, result2, result3]) => { /* 使用 result1、result2 和 result3 */ }); 

如果数组中的某个 Promise 被拒绝,Promise.all() 就会立即拒绝返回的 Promise,并终止其他操作。这可能会导致一些意外的状态或行为。Promise.allSettled() 是另一个组合工具,它会等待所有操作完成后再处理返回的 Promise。

所有的这些方法都是并发运行 Promise 的——一系列 Promise 同时启动,而不是彼此等待。顺序执行也是可能的,这需要一些巧妙的 JavaScript 手段:

js
[func1, func2, func3] .reduce((p, f) => p.then(f), Promise.resolve()) .then((result3) => { /* 使用 result3 */ }); 

在这个例子中,我们使用 reduce 把一个异步函数数组变为一个 Promise 链。上面的代码等同于:

js
Promise.resolve() .then(func1) .then(func2) .then(func3) .then((result3) => { /* 使用 result3 */ }); 

我们也可以写成可复用的函数形式,这在函数式编程中极为普遍:

js
const applyAsync = (acc, val) => acc.then(val); const composeAsync = (...funcs) => (x) => funcs.reduce(applyAsync, Promise.resolve(x)); 

composeAsync() 函数将会接受任意数量的函数作为其参数,并返回一个新的函数,而该函数又接受一个初始值,该组合的参数传递管线如下所示:

js
const transformData = composeAsync(func1, func2, func3); const result3 = transformData(data); 

顺序组合还可以使用 async/await 更简洁地完成:

js
let result; for (const f of [func1, func2, func3]) { result = await f(result); } /* 使用最后的结果(即 result3)*/ 

然而,在你顺序组合 Promise 前,请考虑是否真的有必要——因为它们会阻塞彼此,除非一个 Promise 的执行依赖于另一个 Promise 的结果,否则最好并发运行 Promise。

在旧式回调 API 中创建 Promise

可以通过 Promise 的构造函数从零开始创建 Promise。这种方式(通过构造函数的方式)应当只在封装旧 API 的时候用到。

理想状态下,所有的异步函数应该会返回 Promise。但有一些 API 仍然使用旧方式来传入成功(或者失败)的回调。最典型的例子就是 setTimeout() 函数:

js
setTimeout(() => saySomething("10 秒钟过去了"), 10 * 1000); 

混用旧式回调和 Promise 可能会造成运行时序问题。如果 saySomething 函数失败了,或者包含了编程错误,那就没有办法捕获它了。这得怪 setTimeout()

幸运地是,我们可以将 setTimeout() 封装入 Promise 内。最好的做法是,将这些有问题的函数封装起来,留在底层,并且永远不要再直接调用它们:

js
const wait = (ms) => new Promise((resolve) => setTimeout(resolve, ms)); wait(10 * 1000) .then(() => saySomething("10 秒钟")) .catch(failureCallback); 

通常,Promise 的构造函数接收一个执行函数(executor),我们可以在这个执行函数里手动地解决(resolve)或拒绝(reject)一个 Promise。既然 setTimeout() 并不会真的执行失败,那么我们可以在这种情况下忽略拒绝的情况。你可以在 Promise() 参考中查看更多关于执行函数的信息。

时序

最后,我们将深入了解更多技术细节——关于注册的回调函数何时被调用。

保证

在基于回调的 API 中,回调函数何时以及如何被调用取决于 API 的实现者。例如,回调可能是同步调用的,也可能是异步调用的:

js
function doSomething(callback) { if (Math.random() > 0.5) { callback(); } else { setTimeout(() => callback(), 1000); } } 

我们非常不建议使用上述这种设计,因为它会导致所谓的“Zalgo 状态”。在设计异步 API 的上下文中,这意味着回调在某些情况下是同步调用的,但在其他情况下是异步调用的,这为调用者带来的歧义。更多背景信息,请参见文章为异步设计 API,这是该术语首次被正式提出的地方。这种 API 设计使得副作用难以分析:

js
let value = 1; doSomething(() => { value = 2; }); console.log(value); // 1 还是 2? 

另一方面,Promise 是一种控制反转的形式——API 的实现者不控制回调何时被调用。相反,维护回调队列并决定何时调用回调的工作被委托给了 Promise 的实现者,这样一来,API 的使用者和开发者都会自动获得强大的语义保证,包括:

  • 被添加到 then() 的回调永远不会在 JavaScript 事件循环的当前运行完成之前被调用。
  • 即使异步操作已经完成(成功或失败),在这之后通过 then() 添加的回调函数也会被调用。
  • 通过多次调用 then() 可以添加多个回调函数,它们会按照插入顺序进行执行。

以防万一的提醒:传入 then() 的函数永远不会被同步调用,即使 Promise 已经被解决了(resolved):

js
Promise.resolve().then(() => console.log(2)); console.log(1); // 1, 2 

传入 then() 的函数不会立即运行,而是被放入微任务队列中,这意味着它会在稍后运行(仅在创建该函数的函数退出后,且 JavaScript 执行堆栈为空时),也就是在控制权返回事件循环之前。总而言之,不会等待太久:

js
const wait = (ms) => new Promise((resolve) => setTimeout(resolve, ms)); wait().then(() => console.log(4)); Promise.resolve() .then(() => console.log(2)) .then(() => console.log(3)); console.log(1); // 1, 2, 3, 4 

任务队列 vs. 微任务

Promise 回调被处理为微任务,而 setTimeout() 回调被处理为任务队列。

js
const promise = new Promise((resolve, reject) => { console.log("Promise 执行函数"); resolve(); }).then((result) => { console.log("Promise 回调(.then)"); }); setTimeout(() => { console.log("新一轮事件循环:Promise(已完成)", promise); }, 0); console.log("Promise(队列中)", promise); 

上述代码的输出如下:

Promise 执行函数 Promise(队列中)Promise {<pending>} Promise 回调(.then) 新一轮事件循环:Promise(已完成)Promise {<fulfilled>} 

详见深入:微任务与 Javascript 运行时环境

当 Promise 与 任务冲突时

你可能遇到如下情况:你的一些 Promise 和任务(例如事件或回调)会以不可预测的顺序启动。此时,你或许可以通过使用微任务检查状态或平衡 Promise,并以此有条件地创建 Promise。

如果你认为微任务可能会帮助你解决问题,那么请阅读微任务指南,学习如何用 queueMicrotask() 来将一个函数作为微任务添加到队列中。

参见