I'm posting my code for a LeetCode problem. If you'd like to review, please do so. Thank you for your time!
Problem
Let's say a positive integer is a superpalindrome if it is a palindrome, and it is also the square of a palindrome.
Now, given two positive integers L and R (represented as strings), return the number of superpalindromes in the inclusive range [L, R].
Example 1:
- Input: L = "4", R = "1000"
- Output: 4
- Explanation: 4, 9, 121, and 484 are superpalindromes.
- Note that 676 is not a superpalindrome: 26 * 26 = 676, but 26 is not a palindrome.
Note:
- \$1 <= len(L) <= 18\$
- \$1 <= len(R) <= 18\$
- L and R are strings representing integers in the range [1, 10^18).
int(L) <= int(R)
Inputs
"4" "1000" "10" "99999199999" "1" "999999999999999999"
Outputs
4 23 70
Code
#include <cstdint> #include <cmath> #include <string> #include <math.h> #include <queue> #include <utility> struct Solution { static std::int_fast32_t superpalindromesInRange(const std::string L, const std::string R) { const long double lo_bound = sqrtl(stol(L)); const long double hi_bound = sqrtl(stol(R)); std::int_fast32_t superpalindromes = lo_bound <= 3 && 3 <= hi_bound; std::queue<std::pair<long, std::int_fast32_t>> queue; queue.push({1, 1}); queue.push({2, 1}); while (true) { const auto curr = queue.front(); const long num = curr.first; const std::int_fast32_t length = curr.second; queue.pop(); if (num > hi_bound) { break; } long W = powl(10, -~length / 2); if (num >= lo_bound) { superpalindromes += is_palindrome(num * num); } const long right = num % W; const long left = num - (length & 1 ? num % (W / 10) : right); if (length & 1) { queue.push({10 * left + right, -~length}); } else { for (std::int_fast8_t d = 0; d < 3; ++d) { queue.push({10 * left + d * W + right, -~length}); } } } return superpalindromes; } private: static bool is_palindrome(const long num) { if (!num) { return true; } if (!num % 10) { return false; } long left = num; long right = 0; while (left >= right) { if (left == right || left / 10 == right) { return true; } right = 10 * right + (left % 10); left /= 10; } return false; } };