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Abstract. We present a simple method for verifying the safety prop-
erties of cache coherence protocols with arbitrarily many nodes. Our
presentation begins with two examples. The first example describes in
intuitive terms how the German protocol with arbitrarily many nodes
can be verified using a combination of Murphi model checking and ap-
parently circular reasoning. The second example outlines a similar proof
of the FLASH protocol. These are followed by a simple theory based
on the classical notion of simulation proofs that justifies the apparently
circular reasoning. We conclude the paper by discussing what remains
to be done and by comparing our method with other approaches to the
parameterized verification of cache coherence protocols, such as com-
positional model checking, machine-assisted theorem proving, predicate
abstraction, invisible invariants, and cut-off theorems.

1 Introduction

The by-now standard method in industry for debugging a cache coherence pro-
tocol is to build a formal model of the protocol at the algorithmic level and then
do an exhaustive reachability analysis of the model for a small configuration size
(typically 3 or 4 nodes) using either explicit-state or symbolic model checking.
While this method does offer a much higher degree of confidence in the correct-
ness of the protocol than informal reasoning and simulation can, and protocol
designers often have intuitions about why 3 or 4 nodes suffice to exercise all
“interesting” scenarios, it is still very desirable to actually have a proof that the
protocol model is correct for any number of nodes.

Proving a protocol correct for any number of nodes (or some other config-
uration parameters) is called parameterized verification. Unfortunately, param-
eterized verification is in general an undecidable problem [1]. While this result
may not be directly applicable to a specific protocol or even a restricted class of
protocols, it does suggest that parameterized verification of real-world protocols
will likely require a certain amount of human intervention. So our goal here is to
figure out how to minimize human intervention and maximize the work done by
automatic tools (such as model checkers). Most importantly, we would like the
automatic tools to extract the necessary information from the protocol that can
guide the human prover to come up with the crucial lemmas that will enable the
automatic tools to finish the proof unaided.
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Inspired by McMillan’s work on compositional model checking [10] and its
application to the FLASH cache coherence protocol [12], we present in this paper
a simple method for the parameterized verification of cache coherence protocols
that meet the above desiderata. Our method has several advantages:

1. It can be used with any model checker. The freedom to choose model checkers
is important in practice, as experience shows that for cache coherence proto-
cols explicit-state model checkers are more robust and often more powerful
than symbolic model checkers.1 In this paper we use Murphi [5, 8].

2. It has a clearly spelled-out and, we hope, easy-to-understand theory justify-
ing the soundness of the apparent circularity in its reasoning. The theory is
based on the classical notion of simulation proofs [15].

3. The invariants, called noninterference lemmas, that the human prover has
to provide for the proof to go through fall far short of a full-fledged inductive
invariant, which are very hard to construct for any nontrivial protocol. This
is especially true for more complex protocols such as FLASH.

4. The capability of model checkers to do reachability analysis completely au-
tomates the reasoning about the states of individual nodes and is used to
discover crucial interactions between nodes, which then guide the human
prover to formulate the right noninterference lemmas.

5. Having applied our method to the German and FLASH cache coherence
protocols successfully, we believe that it is quite applicable to many industrial
cache coherence protocols, though certain automation will make it easier and
more reliable to use.

The rest of this paper is organized as follows. Sections 2 and 3 explain our
method in intuitive terms using as examples the German and FLASH cache co-
herence protocols. In addition to demonstrating the feasibility of our method,
these examples give a flavor of the hardest human task in applying our method:
the formulation of noninterference lemmas using insights gained from counterex-
amples. Once all the counterexamples are removed, the theory developed in Sec-
tion 4 based on the classical notion of simulation proofs can be used to justify the
apparently circular reasoning needed in our proofs. Section 5 discusses what re-
mains to be done, in particular how the many tedious tasks performed by hand
in the German and FLASH proofs can and should be mechanized. Section 6
compares our method with other approaches to the parameterized verification
of cache coherence protocols.

Acknowledgements: We are grateful to Steven German for his comments,
which greatly helped to improve this paper.

1 There are several possible reasons for this. First, the speed and space requirement of
explicit executions do not vary a lot with the details of data structures used in the
protocol, while BDD performance can be very sensitive to the precise nature of data
structures (e.g., FIFO queues tend to be bad for BDDs). Second, explicit-state model
checking can take advantage of symmetry reduction [8] in each run, while symmetry
reduction only reduces the number of cases to prove, not the complexity of each
proof, in symbolic model checking [10]. Third, explicit-state model checkers lend
themselves better than symbolic ones to disk-based techniques [4], which can trade
time for capacity. SAT-based symbolic model checkers are not known to outperform
BDD-based ones on cache coherence protocols [13].
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2 Parameterized verification of the German protocol

The German protocol [7] is a simple cache coherence protocol devised by Steven
German in 2000 as a challenge problem to the formal verification community.2

Since then it has become a common example in papers on parameterized verifi-
cation [2, 6, 9, 17]. The Murphi code of the German protocol we will use is shown
in Figure 1 and should be self-explanatory. It is essentially the same as the one
in [17] except that we have shortened identifier names and added data paths to
make it more interesting. The state variable AuxData is an auxiliary variable for
tracking the latest value of the cache line and does not affect the execution of
the protocol in any way; its sole purpose is to allow us to state the property
(DataProp) about the correct data values in memory and caches.

Now let us try to prove that the invariants CtrlProp and DataProp are true
in the German protocol (abbreviated as German below) for an arbitrary number
of caching nodes. The basic idea behind our method is as follows. Consider an
instance of German with a large number of caching nodes. Choose any 2 of
the caching nodes (the reason for the number 2 will become clear later) and
observe the behaviors of them plus the home node (whose data structures are
not indexed by NODE). Note that since all caching nodes are symmetric [8] with
respect to one another, it does not matter which 2 nodes we choose. We will try
to construct an abstract model AbsGerman containing the home node plus the
2 chosen nodes with the following properties:

P1. AbsGerman permits all possible behaviors that the home node plus the 2
chosen nodes can engage in, including what those nodes that are not chosen
can do to them.

P2. The behaviors of AbsGerman are sufficiently constrained that interesting
properties (including CtrlProp and DataProp) can be proved about them.

If we can achieve both P1 and P2, then we can deduce the truth of CtrlProp
and DataProp in German from their truth in AbsGerman. But there is clearly
a tension between P1 and P2 and it is not obvious how to meet them both. Our
strategy is to start with an AbsGerman that obviously satisfies P1 but violates
P2 and then refine AbsGerman over several steps until P2 is satisfied, while
maintaining P1 all the time.

We begin with a naive abstraction of German shown in Figure 2 that is
obtained by making the following changes to the model in Figure 1:

1. Set NODE NUM to 2, which has the effect of changing the type NODE to con-
taining only the 2 nodes chosen for observation.

2. Add a new type declaration: “ABS_NODE : union {NODE, enum{Other}}”,
which contains the 2 chosen nodes plus a special value Other representing
all those nodes that are not chosen.

3. If a state variable (including array entries) has type NODE, change it to
ABS NODE, because in the abstract model a node pointer can still point to a
node that is not being observed (i.e., an Other). In German, there is only
one variable whose type is so changed: “CurPtr : ABS_NODE”.

2 German’s challenge was to verify the protocol fully automatically, which is not our
goal. But his protocol, being short, is a good medium for presenting our method.
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const ---- Configuration parameters ----

NODE_NUM : 4;

DATA_NUM : 2;

type ---- Type declarations ----

NODE : scalarset(NODE_NUM);

DATA : scalarset(DATA_NUM);

CACHE_STATE : enum {I, S, E};

CACHE : record State : CACHE_STATE; Data : DATA; end;

MSG_CMD : enum {Empty, ReqS, ReqE, Inv, InvAck, GntS, GntE};

MSG : record Cmd : MSG_CMD; Data : DATA; end;

var ---- State variables ----

Cache : array [NODE] of CACHE; -- Caches

Chan1 : array [NODE] of MSG; -- Channels for Req*

Chan2 : array [NODE] of MSG; -- Channels for Gnt* and Inv

Chan3 : array [NODE] of MSG; -- Channels for InvAck

InvSet : array [NODE] of boolean; -- Nodes to be invalidated

ShrSet : array [NODE] of boolean; -- Nodes having S or E copies

ExGntd : boolean; -- E copy has been granted

CurCmd : MSG_CMD; -- Current request command

CurPtr : NODE; -- Current request node

MemData : DATA; -- Memory data

AuxData : DATA; -- Latest value of cache line

---- Initial states ----

ruleset d : DATA do startstate "Init"

for i : NODE do

Chan1[i].Cmd := Empty; Chan2[i].Cmd := Empty; Chan3[i].Cmd := Empty;

Cache[i].State := I; InvSet[i] := false; ShrSet[i] := false;

end;

ExGntd := false; CurCmd := Empty; MemData := d; AuxData := d;

end end;

---- State transitions ----

ruleset i : NODE do rule "SendReqS"

Chan1[i].Cmd = Empty & Cache[i].State = I

==>

Chan1[i].Cmd := ReqS;

end end;

ruleset i : NODE do rule "SendReqE"

Chan1[i].Cmd = Empty & (Cache[i].State = I | Cache[i].State = S)

==>

Chan1[i].Cmd := ReqE;

end end;

ruleset i : NODE do rule "RecvReqS"

CurCmd = Empty & Chan1[i].Cmd = ReqS

==>

CurCmd := ReqS; CurPtr := i; Chan1[i].Cmd := Empty;

for j : NODE do InvSet[j] := ShrSet[j] end;

end end;

ruleset i : NODE do rule "RecvReqE"

CurCmd = Empty & Chan1[i].Cmd = ReqE

==>

CurCmd := ReqE; CurPtr := i; Chan1[i].Cmd := Empty;

for j : NODE do InvSet[j] := ShrSet[j] end;

end end;

ruleset i : NODE do rule "SendInv"

Chan2[i].Cmd = Empty & InvSet[i] = true &

( CurCmd = ReqE | CurCmd = ReqS & ExGntd = true )

==>

Chan2[i].Cmd := Inv; InvSet[i] := false;

end end;

ruleset i : NODE do rule "SendInvAck"

Chan2[i].Cmd = Inv & Chan3[i].Cmd = Empty

==>

Chan2[i].Cmd := Empty; Chan3[i].Cmd := InvAck;

if (Cache[i].State = E) then Chan3[i].Data := Cache[i].Data end;

Cache[i].State := I; undefine Cache[i].Data;

end end;

ruleset i : NODE do rule "RecvInvAck"

Chan3[i].Cmd = InvAck & CurCmd != Empty

==>

Chan3[i].Cmd := Empty; ShrSet[i] := false;

if (ExGntd = true)

then ExGntd := false; MemData := Chan3[i].Data; undefine Chan3[i].Data end;

end end;

ruleset i : NODE do rule "SendGntS"

CurCmd = ReqS & CurPtr = i & Chan2[i].Cmd = Empty & ExGntd = false

==>

Chan2[i].Cmd := GntS; Chan2[i].Data := MemData; ShrSet[i] := true;

CurCmd := Empty; undefine CurPtr;

end end;

ruleset i : NODE do rule "SendGntE"

CurCmd = ReqE & CurPtr = i & Chan2[i].Cmd = Empty & ExGntd = false &

forall j : NODE do ShrSet[j] = false end

==>

Chan2[i].Cmd := GntE; Chan2[i].Data := MemData; ShrSet[i] := true;

ExGntd := true; CurCmd := Empty; undefine CurPtr;

end end;

ruleset i : NODE do rule "RecvGntS"

Chan2[i].Cmd = GntS

==>

Cache[i].State := S; Cache[i].Data := Chan2[i].Data;

Chan2[i].Cmd := Empty; undefine Chan2[i].Data;

end end;

ruleset i : NODE do rule "RecvGntE"

Chan2[i].Cmd = GntE

==>

Cache[i].State := E; Cache[i].Data := Chan2[i].Data;

Chan2[i].Cmd := Empty; undefine Chan2[i].Data;

end end;

ruleset i : NODE; d : DATA do rule "Store"

Cache[i].State = E

==>

Cache[i].Data := d; AuxData := d;

end end;

---- Invariant properties ----

invariant "CtrlProp"

forall i : NODE do forall j : NODE do

i != j -> (Cache[i].State = E -> Cache[j].State = I) &

(Cache[i].State = S -> Cache[j].State = I | Cache[j].State = S)

end end;

invariant "DataProp"

( ExGntd = false -> MemData = AuxData ) &

forall i : NODE do Cache[i].State != I -> Cache[i].Data = AuxData end;
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const
NODE_NUM : 2

type
NODE : scalarset(NODE_NUM);

ABS_NODE : union {NODE, enum{Other}};

var
CurPtr : ABS_NODE;

-- Include the original German protocol model
-- here, but with the above changes/additions.

rule "ABS_Skip" end;

rule "ABS_RecvReqS"
CurCmd = Empty

==>
CurCmd := ReqS; CurPtr := Other;

for j : NODE do InvSet[j] := ShrSet[j] end;
end;

rule "ABS_RecvReqE"
CurCmd = Empty

==>
CurCmd := ReqE; CurPtr := Other;

for j : NODE do InvSet[j] := ShrSet[j] end;
end;

rule "ABS_RecvInvAck"
CurCmd != Empty & ExGntd = true

==>
ExGntd := false; undefine MemData;

end;

rule "ABS_SendGntS"

CurCmd = ReqS & CurPtr = Other & ExGntd = false
==>

CurCmd := Empty; undefine CurPtr;
end;

rule "ABS_SendGntE"
CurCmd = ReqE & CurPtr = Other & ExGntd = false &

forall j : NODE do ShrSet[j] = false end
==>

ExGntd := true; CurCmd := Empty; undefine CurPtr;

end;

ruleset d : DATA do rule "ABS_Store"
true

==>
AuxData := d;

end end;

Fig. 2. Abstract German protocol: First version

4. But the occurrences of NODE as array index types are not changed, because
we are observing only the nodes in NODE (plus the home node, which is not
indexed) and have discarded the part of the state corresponding to the nodes
represented by Other.

5. There is nothing to be done about abstracting the state initialization rou-
tine Init, since no node pointer is initialized to a specific node (CurPtr is
initialized to undefined).

6. We now consider how to abstract the state transition rulesets, each of which
has a node parameter i. There are two cases to consider:

(a) When i is one of the 2 chosen nodes: This is taken care of by keeping a
copy of the original ruleset, since now the type NODE contains precisely
those 2 nodes. There is one subtlety, though: note that the precondition
of ruleset SendGntE contains a universal quantification over NODE, which
is weakened by the “shrinking” of NODE to only the 2 chosen nodes. But
since the universal quantification occurs positively, this weakening only
makes the rule more permissive, which is what we want (recall P1 above).

(b) When i is an Other: We create an abstract version of each ruleset for
this case, as shown in Figure 2. The goal is to satisfy P1 without making
the abstract rulesets too permissive. Our method is summarized below:

i. All occurrences of i in the original rulesets are replaced by Other.
ii. All references to the part of the state indexed by Other that occur

positively in the preconditions are replaced by true, since the ab-
stract model does not track that part of the state and hence cannot
know the truth values of such references. By substituting true for
such references, the rules are made more permissive (indeed, often
too permissive, which we will fix later).
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iii. Similarly, all changes to the part of the state indexed by Other are
discarded, since they have no effects on the part of the state that
the abstract model keeps. As a consequence, the rulesets SendReq*,
SendInv, SendInvAck, and RecvGnt* are all abstracted by a single
no-op rule ABS_Skip. Furthermore, since the statement part of rule-
set ABS_RecvInvAck now contains only a single “if c then s end”,
we move the condition c into the guard of the ruleset.

iv. If a part of the state indexed by Other is assigned to a state vari-
able in the abstract model, we undefine that variable to represent
the fact that the value being assigned is unknown. This happens to
MemData in ruleset ABS_RecvInvAck.

v. The argument about the universal quantification in the precondition
of the ruleset ABS_SendGntE is the same as before.

Clearly, the above abstraction steps are conservative in the sense that the Abs-

German thus obtained permit all possible behaviors of the home node plus any
2 caching nodes in German. It is, however, too conservative: if we model-check
the abstract model in Figure 2, we will get a counterexample. In the rest of this
section we explain how AbsGerman can be “fixed” to remove all counterexam-
ples. But before we do that, let us comment out the property DataProp, because
for cache coherence protocols it is generally a good idea to prove all control logic
properties before working on any data path properties, as the latter depends on
the former but not vice versa.

We now do the model checking, which produces the following counterexample
to CtrlProp: node n1 sends a ReqE to home; home receives the ReqE and sends
a GntE to node n1; node n1 receives the GntE and changes its cache state to E;
node n2 sends a ReqS to home; home receives the ReqS and is about to send
an Inv to node n1; but suddenly home receives a bogus InvAck from Other

(via ABS_RecvInvAck), which causes home to reset ExGntd and send a GntS

to node n2; node n2 receives the GntS and changes its cache state to S, which
violates CtrlProp because node n1 is still in E. The bogus InvAck from Other

is clearly where things start to go wrong: if there is a node in E, home should
not receive InvAck from any other node. We can capture this desired property
as a noninterference lemma :

invariant "Lemma_1"

forall i : NODE do

Chan3[i].Cmd = InvAck & CurCmd != Empty & ExGntd = true ->

forall j : NODE do

j != i -> Cache[j].State != E & Chan2[j].Cmd != GntE

end end;

which says that if home is ready to receive an InvAck from node i (note that
the antecedent is simply the precondition of RecvInvAck plus the condition
ExGntd = true, which is the only case when the InvAck is to have any effect
in ABS_RecvInvAck), then every other node j must not have cache state E or a
GntE in transit to it. (We are looking ahead a bit here: if the part about GntE

is omitted from Lemma_1, the next counterexample will compel us to add it.)
If Lemma_1 is indeed true in German, then we will be justified to refine the
offending abstract ruleset ABS_RecvInvAck as follows:
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rule "ABS_RecvInvAck"

CurCmd != Empty & ExGntd = true &

forall j : NODE do

Cache[j].State != E & Chan2[j].Cmd != GntE

end

==> ... end;

where we have strengthened the precondition by instantiating Lemma_1 with i

= Other. (Note that since Other is distinct from any j in NODE in the abstract
model, there is no need to test for the inequality.) Why is this strengthening jus-
tified? Because Lemma_1 says that when RecvInvAck with i = Other is enabled,
the conjunct we add to the precondition of ABS_RecvInvAck is true anyway, so
adding that conjunct does not make ABS_RecvInvAck any less permissive.

But how do we prove that Lemma_1 is true in German? The surprising answer
is that we can prove it in the same abstract model where we have used it to refine
one of the abstract ruleset! Is there any circularity in our argument? The answer
is no, and we will develop a theory in Section 4 to justify this claim.

So we can refine ABS_RecvInvAck as shown above and add Lemma_1 as an
additional invariant to prove in the abstract model. But this is not yet sufficient
for removing all counterexamples. More noninterference lemmas and ruleset re-
finements are needed for that and the model checker will guide us to discovering
them via the counterexamples. The final result of this process is shown in Fig-
ure 3, where the step numbers refer to the following sequence of steps:

Step 1: This is the discussion above.
Step 2: A rather long counterexample to Lemma_1 shows the following. Node

n1 acquires an E copy, which is invalidated by a ReqS from Other. But before
the InvAck reaches home, home receives a bogus InvAck from Other, which
makes home think that there is no E copy outstanding and hence sends GntS
to Other. Now node n2 sends ReqE to home, which receives the stale InvAck
from node n1 and sends GntE to node n2. But the Inv that home sends to
n1 on behalf of n2 is still in the network, which now reaches node n1 and
generates a InvAck. So now we have both a InvAck from node n1 and a
GntE to node n2 in the network, which violates Lemma_1 once Other sends a
ReqE to home. The fix to this problem is to outlaw the bogus InvAck from
Other by refining ABS_RecvInvAck using a strengthened Lemma_1 asserting
that there can be at most one InvAck if it is from an E copy. After this step,
CtrlProp is proved3, so we bring DataProp back by uncommenting it.

Step 3: A trivial counterexample to the first clause of DataProp shows Other

doing a store when ExGntd is false. The fix is to refine ABS_Store using a
new noninterference lemma Lemma_2 that outlaws this.

Step 4: A short counterexample to the first clause of DataProp shows that
Other acquires an E and then messes up MemData by writing back undefined
data. The fix is to refine ABS_RecvInvAck using a strengthened Lemma_1

asserting that the written back data must be AuxData.

3 The fact that CtrlProp is proved for any number of nodes after only two steps and
four more steps are needed to prove DataProp, suggests that there are interesting
properties about the control logic that are not needed to prove the former but needed
for the latter. Interestingly, none of the research papers on verifying German [2, 6,
9, 17] considered adding the data paths.
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-- Everything up to rule "ABS_SendGntE"
-- is exactly the same as in Figure 2.

rule "ABS_RecvInvAck"
CurCmd != Empty & ExGntd = true &

forall j : NODE do
Cache[j].State != E & -- Step 1

Chan2[j].Cmd != GntE & -- Step 1
Chan3[j].Cmd != InvAck -- Step 2

end
==>

ExGntd := false;

MemData := AuxData; -- Step 4
end;

ruleset d : DATA do rule "ABS_Store"
ExGntd = true & -- Step 3

forall j : NODE do
Cache[j].State = I & -- Step 5

Chan2[j].Cmd != GntS & -- Step 5
Chan2[j].Cmd != GntE & -- Step 5

Chan3[j].Cmd != InvAck -- Step 6
end

==>

AuxData := d;
end end;

-- Noninterference lemmas:

invariant "Lemma_1"
forall i : NODE do

Chan3[i].Cmd = InvAck & CurCmd != Empty &

ExGntd = true ->
Chan3[i].Data = AuxData & -- Step 4

forall j : NODE do
j != i -> Cache[j].State != E & -- Step 1

Chan2[j].Cmd != GntE & -- Step 1
Chan3[j].Cmd != InvAck -- Step 2

end end;

invariant "Lemma_2"

forall i : NODE do
Cache[i].State = E ->
ExGntd = true & -- Step 3

forall j : NODE do
j != i -> Cache[j].State = I & -- Step 5

Chan2[j].Cmd != GntS & -- Step 5
Chan2[j].Cmd != GntE & -- Step 5

Chan3[j].Cmd != InvAck -- Step 6
end end;

Fig. 3. Abstract German protocol: Final version

Step 5: A short counterexample to the second clause of DataProp shows that a
node acquires an E copy and then suddenly Other does a store that changes
AuxData. The fix is to refine ABS_Store using a strengthened Lemma_2 as-
serting that if any node i is in state E, then any other node j cannot be in
E as well. Looking ahead, j should also be required not to be in S or about
to become E or S, for similar counterexamples can arise without these addi-
tional properties. Again, the model checker will lead us to these additional
requirements even if we have not thought of them.

Step 6: A counterexample to Lemma_1 shows the following. Node n1 acquires
an E copy, which is invalidated by a ReqE from Other. But before the InvAck
reaches home, Other does a store that changes AuxData to violate its equality
to the data carried by the InvAck (which is added to Lemma_1 in Step 4).
The fix is to refine ABS_Store using a strengthened Lemma_2 asserting that
if any node has cache state E, then any other node cannot have an InvAck

in transit to home.

After Step 6, all counterexamples disappear. According to the theory developed
in Section 4, this means that CtrlProp and DataProp (plus the noninterference
lemmas) have been proved for German with arbitrarily many nodes.

Now we come to the question of why the abstract model is set up to have 2
nodes. This is because none of the universally quantified formulas in the desired
properties (CtrlProp and DataProp), the noninterference lemmas (Lemma_1 and
Lemma_2), and the rulesets has more than 2 nested quantifiers over nodes. So
a 2-node abstract model suffices to give a “maximally diverse” interpretation
to the quantified formulas (i.e., an interpretation in which different quantified
variables are not forced to take on the same values due to the small size of the
universe of the interpretation).

A related question is why, unlikely McMillan in [10, 12], we have been able
to dispense with a three-valued logic in the abstraction and reasoning process.
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The reason for this is that we have imposed the following syntactic constraints
on our models and properties: (1) a state variable (or array entry) of type NODE

is never compared with another state variable (or array entry) of the same type,
and (2) an array over NODE is never indexed into directly by a state variable
(or array entry). For instance, in the rulesets SendGnt* in Figure 1, instead of
using CurPtr to index into arrays directly (as is done in [17]), we introduce a
bound variable i ranging over NODE, test CurPtr = i in the precondition, and
use i to index into arrays. Under these syntactic constraints, the abstraction
process outlined above becomes feasible4 and every logic formula is either true
or false in the abstract model, where Other is a possible value of a node-valued
state variable (or array entry). Our experience suggests that all practical cache
coherence protocols can be modeled and their properties stated under these
syntactic constraints. Also note that these constraints make it impossible for a
formula to implicitly say that “there are K nodes” (e.g., by stating that K node-
valued state variables are pairwise unequal) without a corresponding number of
quantifiers over nodes.5

3 Parameterized verification of the FLASH protocol

The Murphi code of FLASH we use is translated from McMillan’s SMV code
[12], which in turn is translated from Park’s PVS code [16]. To be precise, this
is a model of the “eager mode” of the FLASH protocol.6

FLASH is much more complex and realistic than German. Their numbers of
reachable states (after symmetry reduction) are an indication of this: German

has 852, 5235, 28088 states and FLASH has 6336, 1083603, 67540392 states at
2, 3, 4 nodes, respectively. So, with brute-force model checking, FLASH is at
best barely verifiable at 5 nodes and definitely not verifiable at 6 nodes. (SMV
does not perform any better than Murphi on FLASH.) FLASH is a good test
for any proposed method of parameterized verification: if the method works on
FLASH, then there is a good chance that it will also work on many real-world
cache coherence protocols.

We have done a proof of the safety properties of FLASH for any number of
nodes (which is available upon request) using the same method as described in
Section 2. Due to space limitations, we cannot give full details here. Below we
only list the main differences between this proof and the proof of German:

1. The number of nodes in the abstract model is 3 (instead of 2). For, in FLASH,
the request processing flow is such that it is convenient to make the home
node data structures also indexed by NODE. This has the effect of making
some noninterference lemmas contain 3 nested quantifers over nodes.

4 Existentially quantified formulas that occur positively in rule preconditions will still
cause problems, but in practice they rarely occur and can always be replaced by
auxiliary variables that supply explicit witnesses.

5 We are grateful to Steven German for pointing out this issue to us.
6 In the eager mode of FLASH, the home is allowed to grant an exclusive copy before

all shared copies have been invalidated. In contrast, in the delayed mode of FLASH,
the home must invalidate all shared copies before granting an exclusive copy.
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invariant "Lemma_1"
forall h : NODE do forall i : NODE do

h = Home & Proc[i].CacheState = CACHE_E ->
Dir.Dirty & WbMsg.Cmd != WB_Wb & ShWbMsg.Cmd != SHWB_ShWb & UniMsg[h].Cmd != UNI_Put &
forall j : NODE do UniMsg[j].Cmd != UNI_PutX end &

forall j : NODE do j != i -> Proc[j].CacheState != CACHE_E end
end end;

invariant "Lemma_2"

forall h : NODE do forall i : NODE do forall j : NODE do
h = Home & i != j & j != h & UniMsg[i].Cmd = UNI_Get & UniMsg[i].Proc = j ->
Dir.Pending & !Dir.Local & PendReqSrc = i & FwdCmd = UNI_Get

end end end;

invariant "Lemma_3"
forall h : NODE do forall i : NODE do forall j : NODE do

h = Home & i != j & j != h & UniMsg[i].Cmd = UNI_GetX & UniMsg[i].Proc = j ->

Dir.Pending & !Dir.Local & PendReqSrc = i & FwdCmd = UNI_GetX
end end end;

invariant "Lemma_4"

forall h : NODE do forall i : NODE do
h = Home & i != h & InvMsg[i].Cmd = INV_InvAck ->
Dir.Pending & Collecting & NakcMsg.Cmd = NAKC_None & ShWbMsg.Cmd = SHWB_None &

forall j : NODE do
( UniMsg[j].Cmd = UNI_Get | UniMsg[j].Cmd = UNI_GetX -> UniMsg[j].Proc = h ) &

( UniMsg[j].Cmd = UNI_PutX -> UniMsg[j].Proc = h & PendReqSrc = j )
end end end;

invariant "Lemma_5"
forall i : NODE do Proc[i].CacheState = CACHE_E -> Proc[i].CacheData = CurrData end;

Fig. 4. Noninterference lemmas for FLASH

2. In FLASH there are node-indexed arrays whose entries are node-valued,
which is a type of data structures that German does not have. In the ab-
stract model those node-valued array entries must be allowed to have the
value Other, just like node-valued state variables.

3. In FLASH a ruleset may have up to 2 node parameters. A typical example
is a node n1 with the exclusive copy receiving a forwarded request from the
home, in which case n1 sends the copy directly to the requesting node n2

without going through the home. To abstract such a ruleset, we have to
consider four cases: when n1 and n2 are both in the abstract model, when
n1 is in but n2 is Other, when n2 is in but n1 is Other, and when n1 and n2

are both Other. So a single ruleset in FLASH may be split into up to four
rulesets in the abstract model.

Despite these differences and the complexity of FLASH, we find that we need
to introduce only five noninterference lemmas (shown in Figure 4) to get the
proof to work for both control logic and data path properties. As can be seen,
the conjunction of these lemmas fall far short of an inductive invariant. Perhaps
more importantly, the total amount of efforts required for the proof is modest: 1
day to translate the SMV code into Murphi code, 0.5 day to flush out translation
errors using conventional model checking (up to 4 nodes), 0.5 day to manually
abstract the model, and 1 day to iteratively find the noninterference lemmas
from counterexamples and to finish the proof. One interesting observation is
that the abstract FLASH model has 21411411 reachable states (after symmetry
reduction), so its complexity is roughly between 3-node and 4-node FLASH,
which makes perfect sense.
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4 A theory justifying apparently circular reasoning

When the proof in Section 2 or 3 is completed, a small (2- or 3-node) abstract
model has been constructed and the model checker has proved several invariants
(desired properties and noninterference lemmas) about the abstract model. Why
are we then justified in concluding that the desired properties are in fact true for
the original parameterized model with any number of nodes? We have made some
informal arguments, but they appear alarmingly circular. In particular, why is
it sound to prove the noninterference lemmas in the abstract model which have
been argued to be more permissive than the original model using the very same

lemmas? In this section we first develop a theory based on the classical notion
of simulation proofs [15] that justifies such apparently circular reasoning, and
then shows how it is applied in the German and FLASH proofs.

4.1 Simulation proofs

We will use standard set-theoretic notations. For any function f ∈ A → B and
C ⊆ A and D ⊆ B, the image of C under f is f(C) = {f(a) ∈ B : a ∈ C}
and the inverse image of D under f is f−1(D) = {a ∈ A : f(a) ∈ D}. A
useful fact to know is that f(C) ⊆ D ⇔ C ⊆ f−1(D) ⇔ ∀a ∈ C : f(a) ∈ D.
We also generalize f to operate on A × A: f(a, a′) = (f(a), f(a′)). Let V be
a set of indices. If B is the (cartesian) product of an indexed family of sets,
B =

∏
v∈V Bv, then f naturally induces a family of functions, fv ∈ A → Bv for

v ∈ V , such that f(a) = 〈fv(a) : v ∈ V 〉.
We will model protocols and their abstractions as state transition systems.

Formally, a state transition system (STS) M = (S, I, T ) consists of a set S

of states, a set I ⊆ S of initial states, and a transition relation T ⊆ S × S.
An execution (s0, s1, . . .) of M is a finite or infinite sequence of states of M

such that s0 ∈ I and (si, si+1) ∈ T for all i ≥ 0. A state s of M is reachable

iff s is the last state of a finite execution of M ; the set of reachable states of
M is denoted by R(M). For an indexed family of STSs, Mv = (Sv, Iv , Tv) for
v ∈ V , the product STS is

∏
v∈V Mv = (

∏
v∈V Sv,

∏
v∈V Iv ,

∏
v∈V Tv). Clearly,

we have R(
∏

v∈V Mv) =
∏

v∈V R(Mv).
A set of states P ⊆ S is an invariant of M iff R(M) ⊆ P . A set of states

Q ⊆ S is inductive in M iff ∀s ∈ I : s ∈ Q and ∀(s, s′) ∈ T : s ∈ Q ⇒ s′ ∈ Q.
Clearly, an inductive set of states of M is always an invariant of M , and the set
of reachable states of M , R(M), is the strongest invariant of M and is always
inductive. All safety properties of M can be reduced to invariant properties
provided that a sufficient amount of history information is recorded in the state,
which can always be achieved by adding auxiliary variables.

Milner [15] introduced the notion of simulation. The following definition is not
the most general possible, but rather is tailored to our needs. Let M = (S, I, T )

be a concrete STS and M̃ = (S̃, Ĩ , T̃ ) an abstract STS.

Definition 1. A simulation (P, f) from M to M̃ consists of an inductive

invariant P ⊆ S and an abstraction function f ∈ S → S̃ such that:

∀s ∈ I : s ∈ P ∧ f(s) ∈ Ĩ(1)

∀(s, s′) ∈ T : s ∈ P ⇒ s′ ∈ P ∧ f(s, s′) ∈ T̃(2)
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The notion of simulation is useful because it allows one to infer invariant prop-
erties of the concrete system from those of the abstract system.

Theorem 1. If (P, f) is a simulation from M to M̃ , then:

∀s ∈ R(M) : s ∈ P ∧ f(s) ∈ R(M̃)(3)

Proof. By induction over the lengths of executions of M . ut

Formula (3) says that each reachable state s of M not only satisfies the inductive

invariant P , but also inherits all invariant properties of M̃ via f−1.
In practice, the main difficulty in using simulation to infer properties of the

concrete system from those of the abstract system lies in coming up with a
suitable inductive invariant, which is very hard for any nontrivial system. But,
fortunately, the following theorem says that there is at least one invariant that
always works:

Theorem 2. For any function f ∈ S → S̃, if:

∀s ∈ I : f(s) ∈ Ĩ(4)

∀(s, s′) ∈ T : f(s) ∈ R(M̃) ⇒ f(s, s′) ∈ T̃(5)

then (f−1(R(M̃)), f) is a simulation from M to M̃ and:

∀s ∈ R(M) : f(s) ∈ R(M̃ )(6)

Proof. Let P = f−1(R(M̃)). Since R(M̃ ) is inductive in M̃ , (4) and (5) imply

(1) and (2), respectively. So (P, f) is a simulation from M to M̃ . Furthermore,
(6) and (3) are equivalent in this case. ut

Theorem 2 is the ultimate source of apparent circularity in our proof method, in
the following sense. On the one hand, (6) says that the invariant property that

M inherits from M̃ is f−1(R(M̃ )). On the other hand, (5) says that f−1(R(M̃))
can also be used as an assumption in the inductive step of the simulation proof.

For reasoning about a parameterized concrete system, the abstract system
we will use is a product of many small systems, each of which captures a partial
view of the concrete system. What views are will become clear shortly; here we
just want to point out that a view is not a node in a cache coherence protocol.

Theorem 3. Suppose the abstract system is a product STS, M̃ =
∏

v∈V M̃v,

where M̃v = (S̃v , Ĩv , T̃v) for v ∈ V . If for each v ∈ V :

∀s ∈ I : fv(s) ∈ Ĩv(7)

∀(s, s′) ∈ T : ( ∀u ∈ V : fu(s) ∈ R(M̃u) ) ⇒ fv(s, s′) ∈ T̃v(8)

then (f−1(R(M̃)), f) is a simulation from M to M̃ and:

∀s ∈ R(M) : ( ∀v ∈ V : fv(s) ∈ R(M̃v) )(9)

Proof. Theorem 3 is simply a re-statement of Theorem 2 using the following
facts: Ĩ =

∏
v∈V Ĩv , T̃ =

∏
v∈V T̃v, and R(M̃) =

∏
v∈V R(M̃v). ut

Theorem 3 enables one to break a simulation proof into small subproofs, one for
each view v as represented by the abstract system M̃v (see the antecedent of the
theorem). Furthermore, (8) says that the conjunction of all inherited invariants
can be used as an inductive hypothesis in every subproof.

12



4.2 Applying the theory

We now show how Theorem 3 is used. Let M be German or FLASH with a
large number of nodes.

First, note that the states of M are valuations of a finite number of state

variables each of which is in one of the following forms:

– A boolean variable, x : B.
– A (node) pointer variable, y : N .
– An array of booleans, z : array [N ] of B.
– An array of (node) pointers, w : array [N ] of N .

where N is the set of nodes (or rather, node names) and B is the set of booleans.
(There is no loss of generality in considering only booleans because enumerated
types can be encoded using booleans.)

Second, there is a fixed m such that any subset of m nodes determines a view

v = {n1, . . . , nm} of M . In other words, V is the set of m-element subsets of N .
(For example, m = 2 for German and m = 3 for FLASH.)7 For each v ∈ V ,
the abstraction function fv retains all boolean and pointer variables, discards all
array entries except those indexed by a node in v, and sets any pointer-valued
variable or array entry to a special value Other 6∈ N if its value is 6∈ v. More
precisely, we define fv as follows:





fv(s)(x) = s(x) for x : B

fv(s)(y) = s(y) ↓ v for y : N

fv(s)(z) = λi ∈ v : s(z)(i) for z : array [N ] of B

fv(s)(w) = λi ∈ v : s(w)(i) ↓ v for w : array [N ] of N

where j ↓ v = if j ∈ v then j else Other.
Third, since all nodes are symmetric with respect to each other in M (i.e.,

the set N is a scalarset [8]), we can take all M̃v’s to be isomorphic copies of the

same abstract system M̃r (“r” for “representative”). For instance, for German,

we can take M̃r to be the STS corresponding to AbsGerman (i.e., Figure 3).

For each v ∈ V , M̃v is obtained from M̃r by renaming the nodes using any 1-1
mapping from r to v, where r also denotes the set of (non-Other) nodes in M̃r.

Now let us see what Theorem 3 says, given the above. Its conclusion (9) says

that the property P = ∀v ∈ V : f−1
v (R(M̃v)) is an invariant of M . But what does

P say? P is true of a state s of M iff for any v ∈ V , any invariant of M̃v is true
of s when projected via f−1

v onto the view v (remember that the set of reachable
states is also the strongest invariant). For example, the property CtrlProp has
been proved (by model checking) to be an invariant of AbsGerman and hence

also an invariant of any isomorphic copy M̃v of AbsGerman. Since CtrlProp

contains 2 node quantifiers and M̃v contains 2 nodes, (9) allows us to conclude
that CtrlProp is an invariant of M . The same reasoning applies to all desired
properties and noninterference lemmas in the German and FLASH proofs. Note
again that the reasoning depends on the fact that there are at least as many
nodes in M̃v as there are nested node quantifiers in the invariant.

7 There is a slight complication here: in the case of FLASH, one of the 3 nodes in a
view must be the home node.
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But, in order to invoke the conclusion (9) of Theorem 3, we must discharge its

antecedents (7) and (8) for each view v ∈ V . Since M̃v is a renamed copy of M̃r

and all nodes are symmetric in M , there is no loss of generality in considering
only the case when v = r. We will discuss only (8), since (7) is similar but
simpler. Consider any step (s, s′) of M . Note that the transition relation T can
be decomposed as follows:

T =
⋃

r1∈R1

⋃

i∈N

T r1

i ∪
⋃

r2∈R2

⋃

(i,j)∈N×N

T r2

i,j

where each T r1

i (respectively, T r2

i,j) corresponds to an instance of a ruleset with
name r1 (r2) and node parameters i (i and j). So the proof of (8) entails a case
split into which ruleset instance, T r1

i or T r2

i,j , the step (s, s′) belongs to. The
former case is split further into subcases i ∈ r or i 6∈ r; the latter into subcases
(i ∈ r and j ∈ r) or (i 6∈ r and j ∈ r) or (i ∈ r and j 6∈ r) or (i 6∈ r and j 6∈ r).
We will do one subcase for German as an example of the apparently circular
reasoning; all other cases in the German and FLASH proofs are similar.

Consider the ruleset RecvInvAck in German when i 6∈ r. Suppose it fires.
If we can prove that the state change it effects in M is (via fr) permitted

by ABS_RecvInvAck or ABS_Skip in M̃r, then we have discharged (8) for this
subcase. Since RecvInvAck fires, its precondition:

Chan3[i].Cmd = InvAck & CurCmd != Empty

must be true in the current state s. Now comes the crucial point: (8) allows

us to assume that the aforementioned property P = ∀v ∈ V : f−1
v (R(M̃v)) is

true at s. So we can project the noninterference lemma Lemma_1 on i and any
node j in r. There are two further cases to consider: if ExGntd is true, the pro-
jected Lemma_1 implies that the state change is permitted by ABS_RecvInvAck

(in particular, the precondition of ABS_RecvInvAck is true); otherwise, if ExGntd
is false, RecvInvAck has no effect whatever after fr (because i 6∈ r) and hence
is trivially permitted by ABS_Skip. QED.

5 What remains to be done

The first priority is clearly mechanization. We have carried out by hand the
reasoning steps in Section 4.2 (i.e., the discharging of (7) and (8) and the appli-
cation of (9)). Though they are quite simple, it would be much better if they are
checked by a theorem prover. Another task that should be completely automat-
able is the construction of the initial abstract models as described in Sections 2
and 3. Such abstraction is very tedious and may allow errors to creep in when the
protocol description is long. Ideally, we want to formalize not only the reasoning
steps in Section 4.2 but also the theory developed in Section 4.1 in a theorem
prover, so that we can have a completely formal proof.

It is also desirable to be able to reason about liveness, which we cannot do
now. We have put some thoughts into this and believe that it is doable, but of
course the devil will be in the details. Since Theorem 3 is quite general and does
not depend on any intrinsic property of the index set V , it should be possible to
use it to reason about parameterized systems where the parameter sets are not
scalarsets but have additional structures (such as successor and ordering) [14].
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6 Comparison with other works

This paper owes most of its intellectual debts to McMillan’s work on composi-
tional model checking [10] and its application to FLASH [12]. The abstractions
we used, the reliance on apparently circular reasoning, and the counterexample-
guided discovery of noninterference lemmas are all deeply influenced by McMil-
lan’s work. His framework is also more general than ours by encompassing live-
ness properties [11], though we believe that our framework can be generalized to
handle liveness as well. Relative to his work, we think we make two main con-
tributions. First, we show that practical parameterized verification can be done
using any model checker (not just Cadence SMV) plus some simple reasoning.
The freedom to choose model checkers is important in practice, as experience
shows that for cache coherence protocols explicit-state model checkers are often
superior to symbolic model checkers. Second, we develop a simple theory based
on the classical notion of simulation proofs to justify the apparently circular
reasoning. We believe this de-mystifies compositional model checking and opens
the way to formalizing the theory and its application in a theorem prover.

Park and Dill [16] proved the safety properties of FLASH using machine-
assisted theorem proving in PVS. Their proof is also based on the notion of
simulation proofs, but uses the formulation of simulation in Definition 1, which
requires an inductive invariant. Not surprisingly, they spent a significant amount
(perhaps most) of their efforts on formulating and proving the inductive invari-
ant. In contrast, the conjunction of the noninterference lemmas in Figure 4 falls
far short of an inductive invariant. Also, it took them roughly two weeks to come
up with the inductive invariant and to do the proof, which is a lot longer than
the one day we spent.

Predicate abstraction has been used to verify German (without data paths)
by Baukus, Lakhnech, and Stahl [2] and FLASH by Das, Dill, and Park [3]; the
former also handles liveness. There are two main problems to be solved when
applying predicate abstraction to parameterized verification: how to discover a
suitable set of predicates, and how to map a finite set of predicates onto an
unbounded set of state variables. To solve the second problem, the above two
papers use complex predicates containing quantifiers, some of which are almost
as complex as an invariant. This makes the discovery of such predicates non-
obvious and probably as hard as the formulation of noninterference lemmas.
More recently, a conceptual breakthrough was made by Lahiri and Bryant [9],
who developed a theory of and the associated symbolic algorithms for indexed

predicates, where the indices are implicitly universally quantified over. They used
their techniques to verify a version of German with unbounded FIFO queues.
We believe that there are close connections between their work and this paper,
which we want to explore in the future.

Pnueli, Ruah, and Zuck [17] proposed an automatic (though incomplete)
technique for parameterized verification called invisible invariants, which uses
a small instance with N0 nodes to generate an inductive invariant that works
for instances of any size, where the bound N0 depends on the forms of protocol
and property descriptions. For German (without data paths), N0 = 4. Although
their technique is very attractive for being automatic, there are reasons to believe
that it would not work for FLASH. First, their theory does not seem to allow

15



the protocol to use node pointer arrays indexed by nodes, which FLASH has.
Second, even if the theory can be made to work, the bound N0 for FLASH is
likely to be much greater than 4. Given the remarks in Section 3, this makes it
very doubtful that FLASH can be verified using their method. We believe that
the large bound results from the automatic nature of their method, which forces
them to use general arguments that depend only on the form of the protocol and
property descriptions. In our framework, human insights about specific protocols
can limit the number of nodes needed by means of noninterference lemmas.

Emerson and Kahlon [6] verified German (without data paths) by first re-
ducing it to a snoopy bus protocol and then invoking a theorem of theirs asserting
that if a snoopy bus protocol of a certain form is correct for 7 nodes then it is
correct for any number of nodes. Unfortunately, no such cut-off results are known
for protocols as complex as FLASH (or, for that matter, for German directly),
nor is it clear how FLASH can be reduced to protocols for which cut-off results
are known.
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