
CH 1’86 Proceedings April 1986

Visual Programming, Programming by
Example,

and
Program Visualization:

A Taxonomy.

Brad A. Myers

Dynamic Graphics Project
Computer Systems Research Institute

University o! Toronto
Toronto, OC;tkar;; M5S IA4

ABSTRACT

There has been a great interest recently in systems that
use graphics to aid in the programming, debugging,. and
understanding of computer nrograms. The terms “Visual
Programming” and “-Rogram %sualixation” have been
applied to these systems. Also, there has been a renewed
interest in using examples to help alleviate the complexity
of programming. This technique is called “Programming
by Example.” This paper attempts to provide more mean-
ing to these terms by giving precise definitions, and then
uses these definitions to classify existing systems into a
taxonomy. A number of common unsolved problems with
most of these systems are also listed.

CR Categories and Subject Descriptors: D.1.2 [Software
Engineering]: Automatic Programming; D.2.2 [Software
Engineering]: Tools and Techniques-Flowcharts; D.2.5
[Software Engineering]: Testing and Debugging-
Debugging Aids; D.3.2 [Programming Languages]:
Language Classifications; 1.2.2 [Artificial Intelligence]:
Automatic Programming-Program Synthesis. 1.3.6 [Com-
puter Graphics]: Methodologies and Techniques-
Languages.

Additional Key Words and Phrases: Visual Rogram-
ming, Program Visualization, Programming by Example,
Inferencing.

General Terms: Documentation, Languages.

permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1986 ACM O-8979 I- I gO-6/86/0400 - 0059 $00.75

1. Introduction

As the distribution of personal computers and the
more powerful personal workstations grows, the majority
of computer users now do not know how to program. They
buy computers with packaged software and are not able to
modify the software even to make small changes. In order
to allow the end user to reconfigure and modify the system,
the software may provide various options, but these often
make the system more complex and still may not address
the users’ problems. “Easy-to-use” software, such as the
“Direct Manipulation” systems [Shneiderman 831 actually
make the user-programmer gap worse since more people
will be able to use the software (since it is easy to use), but
the internal program code is now much more complicated
(due to the extra code to handle the user interface). There-
fore, systems are moving in the direction of providing end
user programming. It is well-known that conventional pro-
gramming languages are difficult to learn and use [Gould
841, requiring skills that many people do not have. In an
attempt to make the programming task easier, recent
research has been directed towards using graphics. This
has been called “Visual Programming” or “Graphical Ro-
gramming”. Some Visual Programming systems have suc-
cessfully demonstrated that non-programmers can create
fairly complex programs with little training [Halbert 841.

Another motivation for using graphics is that it tends
to be a higher-level description of the desired actions (often
de-emphasizing issues of syntax and providing a higher
level of abstraction) and may therefore make the program-
ming task easier even for professional programmers. This
may be especially true during debugging, where graphics
can be .used to present much more information about the
program state (such as current variables and data struc-
tures) than is possible with purely‘textual displays. This
is one of the goals of Program Visualization. Other Ro-
gram Visualization systems use graphics to help teach
computer programming.

Programming-by-Example is another technology that
has been investigated to make programming easier, espe-
cially for non-programmers. It involves presenting to the
computer examples of the data that the program is sup-
posed to process and using these examples during the
development of the program. Many, although not all,
Programming-by-Example systems have also used Visual
Programming, so these two technologies are often linked.

Recently, there has been a large number of articles
about systems that incorporate some or all of these
features [Grafton 851lRaeder 851. Unfortunately, the

59

terms have been used imprecisely’, and there has not been
a comprehensive taxonomy that classifies these systems.
This paper attempts to fill this gap in the literature. First,
the important terms are defined in a precise manner, and
then these definitions are used to differentiate the various
systems. Finally, a number of common unsolved problems
with these systems are delineated.

There are many systems that could be included in this
paper in the various categories, but no attempt has been
made to be comprehensive. It is hoped that the selection of
systems listed will help the reader understand the intent of
the cJassi&ation system.
2. Definitions.

Programming What is meant by computer “program-
ming” is probably well understood, but it is important to
have a definition that can be used to eliminate some lim-
ited systems. In this paper, “program” is defined as “a set
of statements that can be submitted as a unit to some com-
puter system and used to direct the behavior of that sys-
tem” [Oxford 831. While the ability to compute “every-
thing” is not required, the system must include the ability
to handle conditionals and iteration, at least implicitly,

Interactive vs. Batch Any programming language system
may either be ‘Gneractive” or “batch.” A batch system has
a large processing delay before statements can be run
while they are compiled, whereas an interactive system
allows statements to be executed when they are entered.
This characterization is actually more of a continuum than
a dichotomy since even interactive languages like LISP
typically require groups of statements (such as an entire
procedure) to be specified before they are executed.

Visual Programming “Visual Programming” (VP) refers
to any system that allows the user to specify a program in
a two (or morel dimensional fashion. Conventional textual
languages are not considered two dimensional since the
compiler or interpreter processes it as a long, one-
dimensional stream. Visual Programming includes con-
ventional flow charts and graphical programming
languages. It does not include systems that use conven-
tional (linear) programming languages to define pictures.
This eliminates most graphics editors, like Sketchpad
[Sutherland 631.

Program Visualization “Program Visualization” (PV) is
an entirely different concept from Visual Programming. In
Visual Programming, the graphics is the program itself,
but in Program Visualization, the program is specified in
the conventional, textual manner, and the graphics is used
to illustrate some aspect of the program or its run-time
execution. Unfortunately, in the past, many Program
Visualization system have been incorrectly labeled “Visual
Programming” (as in [Grafton 851). Program Visualization
systems can be divided along two axes: whether they illus-
trate the code or the data of the program, and whether
they are dynamic or static. “Dynamic” refers to systems
that can show an animation of the program running,
whereas “static” systems are limited to snapshots of the
program at certain points. If a program created using
Visual Programming is to be displayed or debugged,
clearly this should be done in a graphical manner, but this
would not be considered Program Visualization. Although
these two terms are similar and confusing, they have been

IFor example, Zloofs Query-By-Example system (see section 4.2) is not
a Programming by Example system.

widely used in the literature, so it was felt appropriate to
continue to use the common terms.

Programming bv Example The term “Programming by
Example” (PBE) has been used to describe a large variety
of systems. Some early systems attempted to create an
entire program from a set of input-output pairs, Other
systems require the user to “work through’ an algorithm
on a number of examples and then the system tries to infer
the general program structure. This is often called
‘fautomatic programming” and has generally been an area
of Artificial Intelligence research.

Recently, there have been a number of systems that
require the user to specify everything about the program
(there is no inference involved), but the user can work out
the program on a specific example. The system executes
the user’s commands normally, but remembers them for
later re-use. Bill Buxton coined the phrase “Programming
with Examples” to more accurately describe these systems,
Halbert 1841 characterizes Programming with Examples as
“DO What I Did” whereas inferential Programming by
Example might be “Do What I Mean”. The term “Pro-
gramming by Example” will be used to include both
inferencing systems and Programming With Example sys-
tems.

Of course, whenever code is executed in any system,
test data must be entered to run it on. The distinction
between normal testing and “Programming with Exam-
ples” is that in the latter the system requires or
encourages the specification of the examples before pro-
gramming begins, and then applies the program as it
develops to the examples. This essentially requires all
Programming-with-Example systems (but not
Programming-by-Example systems with inferencing) to be
interactive.

3. Advantages of Using Graphics and Examples.

Visual Programming, Program Visualization, and
Programming by Example are very appealing ideas for a
number of reasons. The human visual system and human
visual information processing is clearly optimized for
multi-dimensional data. Computer programs, however, are
presented in a one-dimensional textual form, not utilizing
the full power of the brain. Two-dimensional displays for
programs, such as flowcharts and even the indenting of
block structured programs, have long been known as help-
ful aids in program understanding [Smith 771. Recently, a
number of Program Visualization systems [Myers
bO][Baecker 81llBrown 841 have demonstrated that 2-D
pictorial displays for data structures, such as those drawn
by band on blackboard, are very helpful. It seems clear
that a more visual style of programming could be easier to
understand and generate for humans. Smith I771 discusses
at length these and other psychological motivations for
using more visual displays for programs and data.

It is also well known that people are much better at
dealing with specific examples than with abstract ideas. A
large amount of teaching is achieved by presenting impor-
tant examples and having the students do specific prob-
lems. This helps them understand the general principles.
Programming by Example attempts to extend these ideas
to programming. In its most ideal case, the programmer
acts like the teacher and just gives examples to the com-
puter and the computer, like an intelligent pupil, intuits
the abstraction that covers all the examples.

60

CH 1’86Proceedings

Programming-with-example systems require program-
mers to specify the abstraction, but allow them to work out,
the program on examples as an aid to getting the program
correct. This is motivated by the observation that people
make fewer errors when working out a problem on an
example (or when directly manipulating data as when edit-
ing text or moving icons on the Macintosh [Williams 841)
as compared to performing the same operation in the
abstract, as in conventional programming. The program-
mer does not need to try to keep in mind the large and
complex state of the system at each point of the computa-
tion if it is displayed for him on the screen, This has been
called “programming in debugging mode” [Smith 771. In
addition, these PBE systems may allow the user to specify
a program using the actual user interface of the system,
which is presumably familiar [Attardi 821.

4. Taxonomy of Programming Systems.

This paper presents two taxonomies. This section
discusses one for systems that support programming, Sec-
tion 5 discusses a one for systems that use graphics after
the programming process is finished (Program Visualiza-
tion systems).

A meaningful taxonomy can be created by classifying
programming systems into eight categories using the
orthogonal criteria of

l Visual Programming or not,

l Programming by Example or not, and

l Interactive or batch.

This taxonomy is original with this paper. Of course, a
single system may have features that fit into various
categories and some systems may be hard to classify, so
this paper attempts to characterize the systems by their
most prominent features. Figure 1 shows the division with
some sample systems which are discussed in the following
sections.

4.1. Not VP, Not PBE, Butch and Interactive
These are the conventional textual, linear program-

ming languages that are familiar to all programmers, such
as Pascal, Fortran, and Ada for batch and LISP and APL
for interactive.

4.2. VP, Not PBE, Butch

One of the earliest “visual” representations for pro-
grams was the flowchart. Grail [Ellis 691 could compile
programs directly from computerized flowcharts, but the
contents of boxes were ordinary machine language state-
ments. GAL (see Figure 2) is similar except. that it, uses
Nassi-Shneiderman flowcharts [Nassi 731 and is compiled
into Pascal [Albiauri-Romero 841. Another early effort was
the AMBIT/G [Christensen 681 and AMBITlL [Christensen
711 graphical languages. They supported symbolic mani-
pulation programming using pictures. Both the programs
and data were represented diagrammatically as directed
graphs, and the programming operated by pattern match-
ing. Fairly complicated algorithms, such as garbage collec-
tion, could be described graphically as local transforma-
tions on graphs2.

21t is interesting to note that AMBlTIG, even though it was developed
in 1969, used many of the “modem” user interface techniques, includ-
ing iconic representations, gesture recognition, dynamic menus on the
screen, selection from menus, selection of icons by pointing, moded and
mode-free styles of interaction, etc. [Rower 691.

61

Not Programming by Example

Batch
4.1

Nat VP
All Conventional
Languages:

Pascal, Fortran,
etc.

Interactive
4.1

LISP, APL, etc

4.3

Graphical Program Editor
[Sutherland 661

PIGS
[Pang 831

Query by Example
[Zloof 77, 811

FORMAL

Pitt -
[Glinart 841

PROGRAPH
wu 851 [Pietrzykowski 83,841

GAL State Transition UIMS
[Albizuri-Romero 841 [Jacob 851

Programming by Example

1

Batch
4.4 I

Interactive
4.5 I

Not VP

VP

I/O pairs*
[Shaw 751

Tinker
[Lieberman 821

I I
4.6

[Bauer 781 traces*

AutoProgrammer*
[Biermann 76bl

Pygmalion
[Smith 771

Graphical Thinglab
[Borning 861

SmallStar

4.1

[Halbert 81,841
Rehearsal World

[Gould 841

Classification of programming systems by whether they are visu-
Figure 1.

al or not, whether they have Programming by Example or not,
and whether they are interactive or batch. The small numbers
refer to the section in which the group is discussed. Starred sys-
tems (*I have inferencing, and non-starred PBE systems use Ro-
gramming With Example.

Figure 2.
A Nassi-Shneiderman flowchart program from GAL [Albizuri-
Romero 841.

You might think that a system called “Query by
Example” would be a “Programming by Example” system,
but in fact, according to this classification, it is not. Query
by Example (QBE) (Zloof 771 allows users to specify
queries on a relational database using two-dimensional
tables (or forms), so it is classified as a Visual Program-
ming system. The “examples” in QBE are what Zloof
called variables. They are called “examples” because the

_ ‘ii -3;’ ;,

user is supposed to give them names that refer to what the
system might fill into that field, but they have no more
meaning than variable names in most conventional
languages. The ideas in QBE have been extended to mail
and other non-database areas of office automation in Office
by Example (OBE) [Zloof 811. A related forms-based data-
base language is FORMAL [Shu 851 which explicitly
represents hierarchical structures.

4.3. VP, Not PBE, Interactive

Probably the first Visual Programming system was
William Sutherland’s [&I] which represented programs
somewhat like hardware logic diagrams. Some systems for
programming with flowcharts have been interactive. PIGS
[Pang 831 uses Nassi-Shneiderman flowcharts, and Pitt
[Glinert 841 uses conventional flowcharts. Pitt is
differentiated by its use of color pictures (icons) rather
than text inside of the flowchart boxes (see Figure 3).

Three frames from Pitt [Glinert 841 showing an implementation
of the factorial procedure. The original pictures were in color.

PROGRAPH [Pietrzykowski 831 is another interactive
VP system without PBE. but it is distinguished by supportr
ing a functional data flow language. PROGRAPH
attempts to overcome some of the problems of this type of
language by using a graphical representation that is struc-
tured, as shown in Figure 4. Pietrzykowski 1841 claims
that this alleviates the problem of functional languages
where “the conventional representation in the form of a
linear script makes it almost unreadable”. PROGRAPH is
one of the very few truly concurrent Visual Programming
systems.

I -
4.6. VP, PBE, Batch

Inferencing systems that attempt to cover a wider

Figure 4.
Two procedures from PROGRAPH [Pietrzykowski 841.

A number of systems for automatically generating
user interfaces for programs (User Interface Management
Systems) allow the designer to specify the user interface in
a graphical manner. An example of this is the state tran-
sition diagram editor by Jacob 1851 (see Figure 5). Most
other UIMSs require that designers specify the programs
using some textual representation, so they do not qualify
as Visual Programming.

C Ii 1’86 Proceedings April 1986

Figure 5.
State diagram description of a simple desk calculator [Jacob 851.

4.4. Not VP, PBE, Batch
Some systems have attempted to infer the entire pro-

gram from one or more examples of what output is pro-
duced for a particular input. One program [Shaw 751 can
infer simple recursive LISP programs from a single I/O
pair, such as (A B C D) = = > (D D C C B B A A). This
system is limited to simple list processing programs, and it
is clear that systems such as this one cannot generate all
programs, or are even likely to generate the correct pro-
gram [Biermann 76al.

4.5. Not VP, PBE, Znteractioe

Tinker [Lieberman 821 is a “pictorial” system that is
not VP. The user chooses a concrete example, and the sys-
tem executes LISP statements on this example as the code
is typed in. Although Tinker uses windows, menus, and
other graphics in its user interface, it is not a VP system
since the user presents all of the code to the system in the
conventional linear textual manner.

class of programs than those that can be generated from
I/O pairs have required the user to choose data structures
and algorithms and then run through the computation on a
number of examples. The systems attempt to infer where
loops and conditionals should go to produce the shortest
and most general program that will work for all of the
examples. One such system is by Bauer [78], which also
decides which values in the program should be constants
and which should be variables. It is visual since the user
can specify the program execution using graphical traces.

4.7. VP, PBE, Interactive

Some of the most interesting systems fall into this
final category. Except for AutoProgrammer [Biermann
76bJ, which is similar to Bauer’s system (section 4.6), few
attempt to do inferencing.

Pygmalion [Smith 771 was one of the seminal VP and
PBE systems. It provides an iconic and “analogical”
method for programming: concrete display images for data

62

CH 1’86 Proceedings April 1986

and programs, called icons, are manipulated to create pro-
grams. The emphasis is on “doing” pictorially, rather than
“telling”. Thinglab [Borning 79 and 811 was designed to
alIow the user to describe and run complex simulations
easily. A VP interface to Thinglab is described in [Borning
861. Here the user can define new constraints among
objects by specifying them graphically (see Figure 6).
Also, if a class of objects can be created by combining
already existing objects, then it can be programmed by
example visually in Thinglab.

Figure 6.
Creating a constraint graphically to keep a bar graph the same
size as the value of a register in Thinglab [Borning 861.

SmallStar [Halbert 81 and 841 uses PBE to allow the
end user to program a prototype version of the Star [Smith
821 office workstation. When programming, the user sim-
ply goes into program mode, performs the operations that
are to be remembered, and then leaves program mode.
The operations are executed in the actual user interface of
the system, which the user already knows. Since the sys-
tem does not use inferencing, the user must differentiate
constants from variables and explicitly add control struc-
tures (loops and conditionals). Halbert reports that Star
users were able to create procedures for performing their
office tasks with his system.

The goal of Rehearsal World is to allow teachers who
do not know how to program to create computerized les-
sons easily [Gould 841. Interactive graphics are heavily
used to provide a “collaborative, evolutionary and explora-
tory” environment where programming is “quick, easy and
fun.” The metaphor presented to the user is a theater,
where the screen is the stage and there are predefined per-
formers that the user can direct to create a play (see Fig-
ure 7). The teacher developing the program sees at every
point exactly what the student-user of the play will see. In
addition, the teacher can have additional performers in the
wings (YO the student will not see them) that provide auxi-
liary functions such as flow control. Everything is made
visible to the teachers, however, which allows their think-
ing to be concrete, rather than abstract as in conventional
programming environments. When a new performer is
needed, often its code can be created by example, but when
this is not possible, some Smalltalk code must be written.
The static representation for all performers is Smalltalk
code, which can be edited by those who know how.

Figure 7.
A screen from Rehearsal World [Gould 841 showing the basic
menu (on the left) and the standard set of “performers”.

5. Taxonomy of Program Visualization Systems.

The systems discussed in this section are not pro-
gramming systems since code is created in the conven-
tional manner. Graphics in these are used to illustrate
some aspect of the program after it is written. Figure 8
shows some Program Visualization systems classified by
whether they attempt to illustrate the code or the data of a
program (some provide both], and whether the displays are
static or dynamic.

Code

Data

Static
5.1

Flowcharts
[Haibt 591

SEE Visual Compiler
[Baecker 861

PegaSys
[Moriconi 851

5.3

TX2 Display Files
[Baecker 681

Incense
[Myers 80,831

Dynamic
5.2

BALSA
[Brown 841

PV Prototype
[Brown 851

5.4

Two Systems
[Baecker 751

Sorting out Sorting
[Baecker 811

BALSA
[Brown 841

Animation Kit
[London 851

PV Prototype
[Brown 851

Figure 8. --
Classification of Program Visuahzation Systems by whether they
illustrate code or data, and whether they are dynamic or static.
The small numbers refer to the section in which the group is dis-
cussed.

5.1. Static code visualization

The earliest example of Visualization is undoubtably
the flowchart. As early as 1959, there were programs that
automatically created graphical flowcharts from Fortran or
assembly language programs [Haibt 591. A modern static
system [Baecker 861 has attempted to add multiple fonts,
nice formatting, and other graphics to make code easier to
read (see Figure 9).

63

_ .:.. “.. : -_ ‘.

CH 1’86 Proceedings April 1986

char
i”,
iIll

Wh,k ((c = geldI == ” I, t == 11’ I, c == w);

~~t.r.ilnn~n”mb.r

if (c I= ‘.’ 66 (c < ‘0’ I, c > 9’))
retUrn (c);

S[Ol = c:

C Gel r.7, a, nvmbcr

for y,=(;; ,(c; gelchar >= D’ 66 c <= 3’; i++)

s[i] = c:
if (c == ‘.‘)

il (i c lim)
s[il = c:

/or (i”: (c = gelchar a= ‘0’ 66 c <= 9’; i”)
i, (i c h-n)

r(i, = c:

Figure 9.
A sample of formatted program code from [Baecker 861.

In PegaSys [Moriconi 851, pictures are formal docu-
mentation of programs and are drawn by the user and
checked by the system to ensure that they are syntacti-
cally meaningful and, to some extent, whether they agree
with the program. The program itself, however, must still
be entered in a conventional language (Ada).

5.2. Dynamic code visualization

Most systems in this class do not animate the code
itself, but rather dynamically show what parts of the code
are being executed as the program is run using some sort
of highlighting. Examples are [Brown 841 and [Brown 851,
which are discussed in section 5.4.

5.3. Static data visualization

A very early system for the TX-2 computer could pro-
duce static pictures of the display file to aid in debugging
[Baecker 681. Incense [Myers 80 and 831 automatically
generates static pictorial displays for data structures. The
pictures include curved lines with arrowheads for pointers
and stacked boxes for arrays and records, as well as user-
defined displays (see Figure 10). The goal was to making
debugging easier by presenting data structures to pro-
grammers in the way that they would draw them by hand
on paper.

Figure 10.
A display produced automatically by Incense of 3 records con-
taining pointers [Myers 801.

5.4. Dynamic data visualization

The first few systems in this class actually fall
between dynamic and static. They were computer systems
designed to create movies of data structures and algo-
rithms (e.g. sorting) for teaching computer science
[Baecker 751lBaecker 811. The systems did not produce the
animations in real time, however, so the movies were
made frame by frame. The Balsa system from Brown
University [Brown 841 was also designed to teach students
about programming, but it produces the illustrations in
real time on a personal workstation,

The “PV Prototype” [Brown 851 was designed to aid in
debugging and program understanding, and it supports
dynamic displays of data and easier construction of user-
defined displays. Another system with similar goals, writr
ten in Smalltalk, features smooth transitions from one
state to another [London 851.

6. Areas for Future Research.

Although these systems are attractive for a number of
reasons, and some have been successfully used, they share
a number of unsolved problems which are fruitful areas for
future research.

6.1. Visual Programming

Difficulty with large programs or large data: Almost all
visual representations are physically larger than the
text they replace, so there is often a problem that too
little will fit on the screen. This problem is alleviated
to some extent by scrolling and abstraction.

Lack of functionality: Many VP systems work only in a
limited domain.

Inefficiency: Most VP systems run programs very
slowly.

Unstructured programs: Many VP systems promote
unstructured programming practices (like GOTO).
Many do hot provide abstraction mechanisms (pro-
cedures, local variables, etc.) which are necessary for
programs of a reasonable size.

Static representations of programs that are hard to
understand: For flowcharts, AMBIT and similar sys-
tems, the program begins to look like a maze of wires.
For Rehearsal World and similar systems, the static
representation is simply normal linear code.

No place for comments: An interesting point is that vir-
tually no VP system provides a place for comments.

6.2. Inferential Programming by Example.

The major problem with these systems is that the
user provides no guidance about the structure of the pro-
gram so each new example can radically change the pro-
gram. The programmer often knows, for example, which
values are variables and which are constants or where con-
ditionals should go, but there is no way to directly convey
this infor.mation to these systems. Choosing the correct
examples requires great skill, and it is often difficult in
these systems to modify programs once they exist.

The generated procedures are often “convoluted and
unstructured” [Bauer 78, p. 1311 and the user is never sure
if the generated procedure is correct unless he reads the
code and checks it explicitly. If this is required, however,
most of the advantage of PBE is lost since the user must
then know how to program in order to check it. In fact,

64

the central idea of this “inductive generalization” program-
ming is directly opposed to the modern software-
engineering idea that testing with a few examples can
never guarantee that a program is correct. Clearly, gen-
erating a program from a few examples has the same prob-
lem.

6.3. Programming with Example.

Programming with Example systems that do not
attempt to do inferencing have been more successful. Most
of these are VP systems, so they share the problems listed
in section 6.1. Some additional problems with these sys-
tems (from [Halbert 841) include:

Lack of static representation: These systems often have
no user-understandable static representation for pro-
grams.
Problem with editing programs: The lack of a static
representation makes editing difficult. One alternative
is to run a program from the beginning, but this may
take a long time. Specifying a change for the middle of
a program by example may not be possible without run-
ning it from the beginning since the state of the world
may not be set up correctly to allow the user to specify
the change. Saving periodic snapshots of the system
state may alleviate this problem, but there may be a
great deal of information to save. In addition, a change
may invalidate steps of the program that come after-
wards.
Problem with data description: It is often difficult to
specify what the procedures should operate on: con-
stants, user-specified data, or data found somewhere in
the system qualified by its type, location, name, etc.
Unless there is some explicit mechanism for the user to
tell it, the system does not know why the user chose
some particular data. Also, if the user specifies the
same data item in two different places, is this a coin-
cidence, or should the identical item be used in both
places?

Problem with control structure: When specifying a con-
ditional by example, only one branch can be traveled.
To go back and travel the other branch, a different
example must be given, and the system must be
returned to the correct state for the “IF” statement to
be reevaluated. An additional problem is how to
specify where in the program the conditionals and loops
should be placed.

Lack of functionality: Many systems only provide Pro-
gramming with Example for a few data types and a
small number of operations. As a patch, some provide
escapes to conventional programming languages when
PBE is insufficient.

Avoiding the destruction of real data or other undesir-
able consequences: In an environment such as the
office, where actions in the system may have external
consequences, it may be undesirable for the system to
actually perform certain actions while the program is
being written.

6.4. Program Visualization.

Data Visualization systems have the following problems:

l It is difficult to pick the appropriate picture for a data
abstraction.

After the picture is chosen, it usually requires a great
deal of programming to get the system to produce that
picture.

The amount of data is usually large, and it is difficult
to fit enough on the screen.

Related to the above is the layout problem: deciding
where to place many differently shaped two-
dimensional pictures, which may have arrows and lines
connecting them.

For dynamic data visualization, it is difficult to specify
when the displays should be updated. Issues of aesthet-
ics in timing are very important to produce useful ani-
mations.

For code, there is a separate set of problems:

l There has not been much work on interesting displays
or ways to show progress.

l Like all the other Visual systems, there is the problem
of the size of the pictures. Ways must be found to
decide what code to display and how to compress pro-
cedures to fit on the screen.

l When code and data are animated together, it is
difficult for the user to tell what data is being manipu-
lated by what parts of the code, so some way must be
found to show the relationships of variables to the
displayed data.

7. Conclusion.

Visual Programming, Programming by Example and
Program Visualization are all exciting areas of active com-
puter science research, and they promise to improve the
user interface to programming environments. A number of
interesting systems have been created in each area, and
there are some that cross the boundaries. This paper has
attempted to classify some of these systems and present
the general problems with them in hopes that this will
clarify the use of the terms and provide a context for
future research.

ACKNOWLEDGEMENTS
For helu and suooort of this article. I would like to thank Bill
Buxton: Ron Ba’ecker, Bernita Mye&, and many others at the
University of Toronto. The research described in this paper was
partially funded by the National Science and Engineering
Research Council (NSERC) of Canada.

REFERENCES
[Albizuri-Romero 841 Miten B. Albizuri-Romero. “GRASE--A

Graphical Syntax-Directed Editor for Structured Program-
ming,” SIGPLAN Notices. 19(21 Feb. 1984. pp. 28-37.

[Attardi 821 Giuseppe Attardi and Maria Simi. “Extending the
Power of Programming by Example,” SIGOA Conference on
Ofice Inform&on Syste&, Philadelphia, PA, Jun. 21-23,
1982. pp. 52-66.

[Baecker 681 R.M.Baecker. “Experiments in On-Line Graphical
Debugging: The Interrogation of Complex Data Structures,”
(Summary only) First Hawaii International Conference on
the System Sciences. Jan. 1968. pp. 128-129.

[Baecker 751 R.M.Baecker. “Two Systems which Produce
Animated Animated Representations of the Execution of
Computer Programs,” SIGCSE Bulletin. 7(l) Feb. 1975. pp.
158-167.

[Baecker 811 Ron Baecker. Sorting out Sorting. 16mm color,
sound film, 25 minutes. Dynamics Graphics Project, Com-
puter Systems Research Institute, University of Toronto,
Toronto, Ontario, Canada. 1981. Presented at ACM SIG-
GRAPH’81. Dallas, TX. Aug. 1981.

65

CtH’86 Proceedings April 1986

[Baecker B61 Ronald Baecker and Aaron Marcus. “Design Princi-
ples for the Enhanced Presentation of Computer Program
Source Text,” Human Factors in Computing Systems:
Proceedings SIGCHI’86. Boston, MA. Apr. 13-17, 1986.

[Bauer 781 Michael A. Bauer. A Basis for the Acquisition of Pm-
cedures. PhD Thesis, Department of Computer Science,
University of Toronto. 1978. 310 pages.

[Biermann 76al Alan W. Biermann. “Approaches to Automatic
Programming,” Aduances in Computers, Morris Rubinoff
and Marshall C. Yovitz, eds. (15) New York: Academic
Press, 1976. pp. l-63.

[Biermann 76b] Alan W. Biermann and Ramachandran Krish-
naswamy. “Constructing Programs from Example Computa.
tions,” IEEE Transactions on Software Engineering. SE-
2(3) Sept. 1976. pp. 141-153.

[Borning 791 Alan Borning. Thinglab--A Constraint-Oriented
Simulation Laboratory. Xerox Palo Alto Research Center
Technical Report SSL-79-3. July, 1979.

[Borning 811 Alan Borning. “The Programming Language
Aspects of Thinglab; a Constraint-Oriented Simulation
Laboratory,” Transactions on Programming Language and
Systems. 3(4) Oct. 1981. pp. 353-387.

[Borning 861 Alan Borning. “Defining Constraints Graphically,”
Human Factors in Computing Systems: Proceedings SIG-
CHI’g6. Boston, MA. Apr. 13-17, 1986.

[Brown 841 Marc H. Brown and Robert Sedgewick. “A System for
Algorithm Animation,” Computer Graphics: SIGGRAPH’BI
Conference Proceedings. Minneapolis, Minn. lS(3) July 23-
27, 1984. pp, 177-186.

[Brown 851 Gretchen P. Brown, Richard T. Carling, Christopher
F. Herot, David A. Kramlich, and Paul Souza. “Program
Visualization: Graphical Support for Software Develop-
ment,” IEEE Computer. 18(a) Aug. 1985. pp. 27-35.

[Christensen 681 Carlo5 Christensen. “An Example of the Mani-
pulation of Directed Graphs in the AMBITM: Programming
Language,” in Interactive Systems for Experimental Applied
Mathematics, Melvin Klerer and Juris Reinfelds, eds. New
York: Academic Press, 1968. pp. 423-435.

[Christensen 711 Carlos Christensen. “An Introduction to
AMBIT/L, A Diagramatic Language for List Processing,”
Proceedings of the 2nd Symposium on Symbolic and Alge-
braic Manipulation. Los Angeles, CA. Mar. 23-25, 1971. pp.
248-260.

[Ellis 691 T.O. Ellis, J.F. Heafner and W.L. Sibley. The Grail
Project: An Experiment in Man-Machine Communication.
RAND Report RM-5999-Arpa. 1969.

[Glinert 841 Ephraim P. Glinert and Steven L. Tanimoto. “Pitt:
An Interactive Graphical Programming Environment,”
IEEE Computer. 17(11) Nov. 1984. pp. 7-25.

[Gould 841 Laura Gould and William Finzer. Programming by
Rehearsal. Xerox Palo Alto Research Center Technical
Report SCL-84-l. May, 1984. 133 pages. Excerpted in Byte.
9(6) June, 1984.

[Grafton 851 Robert B. Grafton and Tadao Ichikawa, eds. IEEE
Computer, Special Issue on Visual Programming. 18(S)
Aug. 1985.

[Haibt 591 Lois M. Haibt. “A Program to Draw Multi-Level Flow
Charts,” Proceedings of the Western Joint Computer Confer-
ence. San Francisco, CA. 15 Mar. 3-5, 1959. pp. 131-137.

[Halbert 811 Daniel C. Halbert. An Example of Programming by
Example. Masters of Science Thesis. Computer Science
Division, Dept. of EE&CS, University of California, Berke-
ley and Xerox Corporation Office Products Division, Palo
Alto, CA. June, 1981.

[Halbert 841 Daniel C. Halbert. Programming by Example. PhD
Thesis. Computer Science Division, Dept. of EE&CS,
University of California, Berkeley. 1984. Also: Xerox Office
Systems Division, Systems Development Department, TR
OSD-T8402, December, 1984.

[Jacob 851 Robert J.K. Jacob. “A State Transition Diagram
Language for Visual Programming,” IEEE Computer. 18(8)
Aug. 1985. pp. 51-59.

[Lieberman 821 Henry Lieberman. “Constructing Graphical User
Interfaces by Example,” Graphics Interface’g2, Toronto,
Ont. Mar. 17-21, 1982. pp. 295-302.

[London 851 Ralph L. London and Robert A. Druisberg. “Animat-
ing Programs in Smalltalk,” IEEE Computer. 18(S) Aug.
1985. pp. 61-71.

[Moriconi 851 Mark Moriconi and Dwight F. Hare. “Visualizing
fiagram Designs Through PegaSys,” IEEE Computer. 18(8)
Aug. 1985. pp. 72-85.

[Myers 801 Brad A. Myers. Displaying Data Structures for
In&active Debugging. Xerox Palo Alto Research Center
Technical Report CSL-80-7. June, 1980.

[Myers 831 Brad A. Myers. “Incense: A System for Displaying
Data Structures,” Computer Graphics: SIGGRAPH ‘a3
Conference Proceedings. 17(3) July 1983. pp. 115-125.

[Nassi 731 I. Nassi and B. Shneiderman. “Flowchart Techniques
for Structured Programming,” SIGPLAN Notices. S(8) Aug.
1973. pp. 12-26.

[Oxford 831 Dictionary of Compu ting. Oxford: Oxford University
Press, 1983.

[Pietrzykowski 831 Thomas Pietrzykowski, Stanislaw Matwin,
and Tomasz Muldner. “The Programming Language PRO-
GRAPH: Yet Another Application of Graphics,” Graphics
Znterface’83, Edmonton, Alberta. May 9-13, 1983. pp. 143-
145.

[Pietrykowski 841 T. Pietrzykowski and S. Matwin. PRO-
GRAPH: A Preliminary Report. University of Ottawa
Technical Report TR-84-07. April, 1984.

[Pang 831 M.C. Pong and N. Ng. “Pigs--A System for Program-
ming with Interactive Graphical Support,” Soflware--
practice and Experience. 13(9) Sept. 1983. pp. 847-855.

[Raider 851 Georg Raeder. “A Survey of Current Graphical Pro-
gramming Techniques,” IEEE Computer. 18(8) Aug. 1985.
pp. 11-25.

[Rovner 693 P.D. Rovner and D.A. Henderson, Jr. “On the Imple-
mentation of AMBIT/G: A Graphical Programming
Language,” Proceedings of the International Joint Confer-
ence on Artificial Intelligence. Washington, D.C. May 7-9,
1969. pp. s-20.

[Shaw 751 David E. Shaw, William R. Swartout, and C. Cordell
Green. “Inferring Lisp Program8 from Examples,” Fourth
International Joint Conference on Artificial Intelligence.
Tbilisi, USSR. Sept. 3-8, 1975. 1 pp. 260-267.

[Shneiderman 831 Ben Shneiderman. “Direct Manipulation: A
Step Beyond Programming Languages,” IEEE Computer.
16(8) Aug. 1983. pp. 57-69.

[Shu 851 Nan C. Shu. “FORMAL: A Forms-Oriented Viaual-
Directed Application Development System,” IEEE Com-
puter. 18(e) Aug. 1985. pp. 38-49.

[Smith 771 David C. Smith. Pygmalion: A Computer Program to
Model and Stimulate Creative Thought. Basel, Stuttgart:
Birkhauser, 1977.

[Smith 821 David C. Smith, Charles Irby, Ralph Kimball, Bill
Verplank, and Erik Harslem. “Designing the Star User
Interface,” Byte Magazine. April 1982. pp. 242-282.

[Sutherland 631 Ivan E. Sutherland. “Sketchpad: A Man-
Machine Graphical Communication System,” AFIPS Spring
Joint Computer Conference. 23 1963. pp. 329-346.

[Sutherland 661 William R. Sutherland. On-line Graphical
Specification of Computer Procedures. MIT PhD Thesis. Lin-
coln Lab8 Report TR-405. 1966.

[Williams 841 Gregg Williams. “The Apple Macintosh Com-
puter,” Byte Magazine. g(2) February 1984. pp. 30-64.

[Zloof 771 Moshe M. Zloof and S. Peter de Jong. “The System for
Business Automation (SBA): Programming Language,”
CACM. 20(6) June, 1977. pp. 385-396.

[Zloof 811 Moshe M. Zloof. “QBEIOBE: A Language for Office and
Business Automation,” IEEE Computer. 14(5) May, 1981.
pp. 13-22.

66

