
Selective Open Recursion:
A Solution to the Fragile Base Class Problem

Jonathan Aldrich
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

jonathan.aldrich@cs.cmu.edu

ABSTRACT
Current object-oriented languages do not fully protect the
implementation details of a class from its subclasses, mak-
ing it difficult to evolve that implementation without break-
ing subclass code. Previous solutions to the so-called fragile
base class problem specify those implementation dependen-
cies, but do not hide implementation details in a way that al-
lows effective software evolution.

In this paper, we show that the fragile base class problem
arises because current object-oriented languages dispatch
methods using open recursion semantics even when these se-
mantics are not needed or wanted. Our solution is to make
explicit the methods to which open recursion should apply.

We propose to change the semantics of object-oriented dis-
patch, such that all calls to “open” methods are dispatched
dynamically as usual, but calls to “non-open” methods are
dispatched statically if called on the current object this , but
dynamically if called on any other object. By specifying a
method as open, a developer is promising that future ver-
sions of the class will make internal calls to that method in
exactly the same way as the current implementation. Because
internal calls to non-open methods are dispatched statically,
developers can change the way these methods are called
without affecting subclasses.

We have implemented Selective Open Recursion as an ex-
tension to Java. To verify the correctness of our design, we
formalize it as an extension to Featherweight Java. We then
prove a variant of Reynolds’ abstraction theorem for our
system. This modularity property shows that a class can
be changed without affecting its subclasses, as long as the
method implementations have the same functional behavior,
and as long as the two implementations invoke open meth-
ods under the same conditions. Thus, developers using our
system can evolve a class with confidence that their changes
will not affect subclasses.

1. Introduction
In his seminal paper, Parnas laid out the classic theory of

information hiding: developers should break a system into
modules in order to hide information that is likely to change
[13]. Thus if change is anticipated with reasonable accuracy,
the system can be evolved with local rather than global sys-
tem modifications, easing many software maintenance tasks.
Furthermore, the correctness of each module can be veri-
fied in isolation from other modules, allowing developers to
work independently on different sub-problems.

public class CountingSet extends Set {
private int count;

public void add(Object o) {
super.add(o);
count++;

}
public void addAll(Collection c) {

super.addAll(c);
count += c.size();

}
public int size() {

return count;
}

}

Figure 1: The correctness of the CountingSet class de-
pends on the independence of add and addAll in the im-
plementation of Set . If the implementation is changed
so that addAll uses add , then count will be incremented
twice for each element added.

Unfortunately, developers do not always respect the in-
formation hiding boundaries of modules–it is often tempt-
ing to reach across the boundary for temporary convenience,
while causing more serious long-term evolution problems.
Thus, encapsulation mechanisms such as Java’s packages
and public/private data members were developed to give
programmers compiler support for enforcing information
hiding boundaries.

While the encapsulation mechanisms provided by Java
and other languages can help to enforce information hiding
boundaries between an object and its clients, enforcing in-
formation hiding between a class and its subclasses is more
challenging. The private modifier can be used to hide
some method and fields from subclasses. However, inher-
itance creates a tight coupling between a class and its sub-
classes, making it difficult to hide information about the im-
plementation of public and protected methods in the su-
perclass.

1.1 The Fragile Base Class Problem
The breakdown of information hiding in the presence of

inheritance causes the Fragile Base Class Problem, one of the
most significant challenges faced by designers of object-

1

oriented libraries. Figure 1 shows an example of the fragile
base class problem, taken from the literature [15, 11, 4].

In the example, the Set class has been extended with an
optimization that keeps track of the current size of the set in
an additional variable. Whenever a new element or collec-
tion of elements is added to the set, the variable is updated
appropriately.

Unfortunately, the implementation of CountingSet
makes assumptions about the implementation details of
Set –in particular, it assumes that Set does not implement
addAll in terms of add . This coupling means that the im-
plementation of Set cannot be changed without breaking
its subclasses. For example, if Set was changed so that the
addAll method calls add for each member of the collection
in the argument, the count variable will be updated not only
during the call to addAll , but also for each individual add
operation–and thus it will end up being incremented twice
for each element in the collection.

The core of the problem is the open recursion provided by
inheritance–that is, the fact that method calls on the cur-
rent object this are dynamically dispatched, and can there-
fore be intercepted and observed by subclass code. Open
recursion is useful for many object-oriented programming
idioms–for example, the template method design pattern [8]
uses open recursion to invoke customized code provided by
a subclass. However, sometimes making a self-call to the cur-
rent object is just an implementation convenience, not a se-
mantic requirement. The whole point of encapsulation is to
ensure that subclasses do not depend on such implementa-
tion details, so that a class and its subclasses can be evolved
independently. Thus inheritance breaks encapsulation when
implementation-specific self-calls are made.

1.2 Previous Approaches
Although the example in the figure above is simplistic,

the fragile base class problem presents a severe challenge to
object-oriented library designers. Joshua Bloch, one of the
principal designers of the Java standard libraries, considers
the problem so significant that he recommends that library
designers make their classes final so they cannot be ex-
tended by inheritance at all [4]. Bloch, Szyperski, and others
suggest using delegation in place of inheritance [4, 16], but as
Szyperski notes, not all uses of inheritance can be replaced by
delegation because open recursion is sometimes needed [16].

A number of researchers have proposed to address the
fragile base class problem by documenting calling depen-
dencies between methods [10, 15, 14]. In these proposals, the
author of a class documents which methods call which other
methods, and subclasses can rely on these dependencies. Un-
fortunately, these proposals solve the fragile base class prob-
lem not by hiding implementation details, but rather by ex-
posing them. Since the calling patterns of a class are doc-
umented in the subclassing interface–and since subclasses
may depend on them–making significant changes to the im-
plementation of the class become impossible.

1.3 Contribution
The contribution of this paper is Selective Open Recursion,

a new approach that provides the benefits of inheritance and
open recursion where they are needed, but allows program-
mers to effectively hide many details of the way a class is
implemented. In our system, method calls on the current ob-
ject this are dispatched statically by default, meaning that

subclasses cannot intercept internal calls and thus cannot be-
come dependent on those implementation details. External
calls to the methods of an object–i.e., any method call not
explicitly invoked on this –are dynamically dispatched as
usual.

If an engineer needs open recursion, she can declare a
method “open,” in which case self-calls to that method are
dispatched dynamically. By declaring a method “open,” the
author of a class is promising that any changes to the class
will preserve the ways in which that method is called.

We have implemented our proposal in a Java compiler. We
are also in the process of implementing an analysis that can
annotate an existing Java program with the minimal set of
“open” declarations that are necessary so that the program
has the same semantics in our system. This analysis could be
used to automatically and safely translate existing Java pro-
grams into a system supporting Selective Open Recursion.

To validate our proposal in theory, we model it as an exten-
sion to Featherweight Java. We prove a variant of Reynolds’
abstraction theorem in our system: if two implementations of
a class are bisimilar with respect to the open methods in that
class, then no client or subclass can distinguish these imple-
mentations. The abstraction theorem is the core property un-
derlying modularity and information hiding, in that it proves
that the implementation of class can be changed without af-
fecting clients. To the best of our knowledge, our work is the
first to prove this abstraction property for a language with
inheritance.

1.4 Outline
In the next section we provide more details on our Selec-

tive Open Recursion proposal. Section 3 describes our imple-
mentation of Selective Open Recursion. Section 4 describes
the design of an analysis that can be used to safely and auto-
matically transform existing Java code into our system. Sec-
tion 5 models Selective Open Recursion in Featherweight
Java, and proves an abstraction result. Section 6 describes
related work in more detail, and Section 7 concludes.

2. Selective Open Recursion
We argue that the issue underlying the fragile base class

problem is that current languages do not allow program-
mers to adequately express the intent of various methods
in a class. There is an important distinction between meth-
ods used for communication between a class and its clients,
vs. methods used for communication between a class and its
subclasses.

Some methods are specifically intended as callbacks or ex-
tension points for subclasses. These methods are invoked re-
cursively by a class so that its subclasses can provide cus-
tomized behavior. Examples of callback methods include
methods denoting events in a user interface, as well as ab-
stract “hook” methods in the template method design pat-
tern [8]. Because callback methods are intended to be in-
voked whenever some semantic event occurs, any changes
to the base class must maintain the invariant that the method
is always invoked in a consistent way. The fragile base class
problem cannot arise in this setting, because the correct se-
mantics of the method already require that the method be
called in a consistent way.

In contrast, many accessor and mutator functions are pri-
marily intended for use by clients. If the implementation of
a class also uses these functions, it is typically as a conve-

2

public class Set {
List elements;

public void add(Object o) {
if (!elements.contains(o))

elements.add(o);
}
public void addAll(Collection c) {

Iterator i = c.iterator();
while (i.hasNext())

add(i.next());
}

}

Figure 2: In the first solution to the problem described
in Figure 1, the developer decides not to mark either add
or addAll as open . Thus, when addAll invokes add ,
the call is dispatched statically, so that Set ’s implementa-
tion of add executes even if a subclass overrides the add
method (Client calls to add are dispatched statically as
usual). Thus, subclasses cannot tell if addAll was imple-
mented in terms of add or not, allowing the maintainer of
Set to change this decision.

nience, not because the class expects subclasses to override
the function with customized behavior. The fragile base class
problem occurs exactly when a “client-oriented” method is
called recursively by a superclass, but is also overridden by a
subclass. Because the recursive call to the method was never
intended to be part of the subclassing interface, the main-
tainer of the base class should be able to evolve the class to
use (or not use) such methods without affecting subclasses.

The key insight underlying Selective Open Recursion is
that the circumstances where the fragile base class problem may
arise are exactly those circumstances where open recursion is not
needed. Subclasses do not need to intercept recursive calls
to methods that were not intended as callbacks or extension
points–they can always provide their behavior by overrid-
ing the external interface of a class. At most, intercepting
recursive calls to “client-oriented” methods is only a minor
convenience, and one that creates an undesirable coupling
between subclass and superclasses.

We propose to add a new modifier, open , which allows
developers to more fully declare their underlying design in-
tent. An open method has open recursion semantics; it is
treated as a callback for subclasses that will always be recur-
sively invoked by the superclass whenever some conceptual
event occurs. Ordinary methods–those without the open
keyword–are not part of the subclassing interface. While ex-
ternal calls to ordinary methods are dynamically dispatched
as usual, recursive calls where the receiver is this are dis-
patched statically. Because open recursion does not apply
to methods that are not marked open , subclasses cannot de-
pend on when they are invoked, and the fragile base class
problem cannot occur.

In our proposal, there are two choices a designer can make
to solve the problem described in Figure 1. In the first solu-
tion, shown in Figure 2, the designer of the Set class has
decided that neither add and addAll are intended to act
as subclass callbacks, and so neither method was annotated
open . In this case, subclasses cannot tell whether addAll
is implemented in terms of add or not, and so the fragile

public class Set {
List elements;

public void open add(Object o) {
if (!elements.contains(o))

elements.add(o);
}
public void addAll(Collection c) {

Iterator i = c.iterator();
while (i.hasNext())

add(i.next());
}

}

Figure 3: In the second solution to the problem described
in Figure 1, the developer decides that the add method de-
notes a semantic event of interest to subclasses, and there-
fore marks add as open . By doing this, the developer is
promising that any correct implementation of Set will call
add once for each element added to the set. Therefore, a
subclass interested in “add element” events can override
the add method without overriding addAll .

base class problem cannot arise. Even if addAll calls add
on the current object this (which is implicit in the exam-
ple), this call will be dispatched statically and so subclasses
cannot intercept it. Note that calls to add from clients are dis-
patched dynamically as usual, so that an implementation of
CountingSet can accurately track the element count sim-
ply by overriding both add and addAll .

In the second solution, shown in Figure 3, the designer
of the Set class has decided that add represents a seman-
tic event (adding an element to the set) that subclasses may
be interested in reacting to. The designer therefore annotates
add as open , documenting the promise that even if the im-
plementation of Set changes, the add method will always
be called once for each element added to the set. The imple-
mentor of CountingSet can keep track of the element count
by overriding just the add function. Any changes to the Set
class will not break the CountingSet code, because the im-
plementor of Set has promised that any changes to Set will
preserve the semantics of calls to add .

2.1 Using Selective Open Recursion
With any new language construct, it is important not only

to describe the construct’s meaning but also how to use it ef-
fectively. We offer tentative guidelines for the use of open ,
which can be refined as experience is gained with the con-
struct.

We expect that public methods will generally not be
open . The rationale for this guideline is that public meth-
ods are intended for use by clients, not by subclasses. In
general, any internal use of these public methods is probably
coincidental, and subclasses should not rely on these calls.
There are exceptions–for example, the add method could
be both public and open , depending on the designer’s
intent–but these idioms can also be expressed by having the
public method invoke a protected open method. For
example, instead of making the add method open , the de-
veloper could implement both add and addAll in terms of
a protected , open internalAdd method that serves as
the subclass extension point. Using this protected method

3

solution is potentially cleaner because it separates the client
interface from the subclassing interface.

On the other hand, we expect that protected methods
will either be final or open . Protected methods are usually
called on the current object this , so overriding them is use-
ful only in the presence of open recursion. Protected meth-
ods that are not intended to represent callbacks or extension
points for subclasses should be marked as final .

Private methods in languages like Java are unaffected by
our proposal; since they cannot be overridden, open recur-
sion is not relevant.

2.2 An Alternative Proposal
The discussion above suggests an alternative proposal: in-

stead of adding a new keyword to the programming lan-
guage, simply use open recursion dispatch semantics for
all (non-final) protected methods and treat all public
methods as if they were non-open. This alternative has the
advantage of simplicity; it takes advantage of common pat-
terns of usage, does not add a new keyword to the language,
and encourages programmers to cleanly separate the public
client interface from the protected subclass interface.

However, there are two disadvantages to the alternative. If
a public method also represents an event that subclasses may
want to extend, the programmer will be forced to create an
additional protected method for the subclass interface, creat-
ing a minor amount of code bloat. Furthermore, the proposal
that makes open explicit is a more natural evolutionary path;
existing Java code need only be annotated with open (per-
haps with the analysis described in Section 4), whereas in the
alternative proposal public methods that are conceptually
open would have to be re-written as a pair of public and
protected methods.

2.3 Applications to Current Languages
Our proposal extends languages like Java and C# in or-

der to capture more information about how a class can be
extended by subclasses. However, the idea of “open” meth-
ods can also be applied within existing languages, providing
engineering guidelines for avoiding problematic uses of in-
heritance.

The discussion above suggests that developers should
avoid calling public methods on the current object this .
If a public method contains code that can be reused else-
where in the class, the code should be encapsulated in a
protected or private method, and the public method
should call that internal method. This guideline was pre-
viously suggested by Ruby and Leavens [14], and appears
to be common practice within the Java standard library
in any case. For example, the java.util.Vector class
in the JDK 1.4.2 internally calls a protected method,
ensureCapacityHelper , to verify that the underlying
array is large enough–even though the public method
ensureCapacity could be used instead.

Protected methods should be final if they don’t repre-
sent an explicit extension point for subclasses. The author
of a library should carefully document under which circum-
stances non-final protected methods are called, so that sub-
classes can rely on the semantics.

2.4 A Rejected Alternative Design
Based on the insight that the fragile base class problem

arises when open recursion is used unintentionally, there is a

natural alternative design to be considered. In the discussion
above, we chose to annotate methods as being open or not;
an alternative is to annotate call sites as using dynamic or
static dispatch. We rejected this alternative for two reasons.
First, it is a poor match for the design intent, which associates
a method–not a call site–with a callback or extension point.
Second, because the design intent is typically associated with
methods, it would be very surprising if different recursive
calls to the same method were treated differently. By anno-
tating the method rather than the call site, our proposal helps
developers be consistent.

2.5 Family Polymorphism
The fragile base class problem can be generalized to sets of

classes that are closely related. For example, if a Graph mod-
ule defines classes for nodes and edges, it is likely that the
node and edge class are closely related and will often be in-
herited together. Just as self-calls in an object-oriented setting
can be mistakenly “captured” by subclasses, calls between
node and edge superclasses might be mistakenly captured
by node and edge subclasses.

This paper is primarily focused on the version of the prob-
lem that is restricted to a single subclass and superclass,
partly because the right solution is more clear-cut in this
setting. However, some languages provide first-class sup-
port for extending related classes together through mech-
anisms like Family Polymorphism [7]. In this setting, our
proposal could potentially be generalized to distinguish be-
tween inter-object calls that should be dispatched dynami-
cally and those that should be dispatched statically. Further
work is needed to understand how to apply our proposal ef-
fectively in this setting.

2.6 Pure Methods
A central aspect of our approach is that a class must docu-

ment the circumstances under which all of its open methods
are called internally. As suggested by Ruby and Leavens [14],
it is possible to relax this requirement for pure methods which
have no (visible) side-effects. Since these methods have no
effects, a class can change the way in which they are called
without affecting subclasses. An auxiliary analysis or type
system could be used to verify that pure methods have no
effects, including state changes (other than caches), I/O op-
erations, or non-termination.

3. Implementation
We have implemented Selective Open Recursion as an ex-

tension to the Barat Java compiler [5]. Our implementation
strategy leaves open methods and private methods un-
changed. For each non-open public/protected method
in the source program, we generate another protected
final method containing the implementation, and rewrite
the original method to call the new method. We leave all calls
to open methods unchanged, as well as all calls to methods
with a receiver other than this . For every call to a non-open
method that has this as the receiver, including implicit uses
of this , we call the corresponding implementation method,
thus simulating static dispatch.

Our implementation of Selective Open Recursion is avail-
able at http://www.archjava.org/ as part of the open
source ArchJava compiler.

4

4. Inference of Open Recursion
In order to ease a potential transition from standard Java or

C# to a system with Selective Open Recursion, we are imple-
menting an analysis that can automatically infer which meth-
ods must be annotated with open in order to preserve the
original program’s semantics. Of course, our system is iden-
tical to Java-like languages if every method is open , so the
goal of the analysis is to introduce as few open annotations
as possible. Extra open annotations are problematic because
they create the possibility of using open recursion when it
was not intended, thus triggering the fragile base class prob-
lem. In general, no analysis can do this perfectly, because
the decision to make a method open is a design decision that
may not be expressed explicitly in the source code. However,
an analysis can provide a reasonable (and safe) default that
can be refined manually later.

In order to gain precision, our analysis design assumes
that whole-program information is available. A local ver-
sion of the analysis could be defined, but it would have to
assume that every method called on this is open , because
otherwise some unknown subclass could rely on the open
recursion semantics of Java-like languages. This assumption
would be extremely conservative, so much so that it would
be likely to obscure any potential benefits of Selective Open
Recursion.

Our analysis design examines each public and
protected method m of every class C. The program
potentially relies on open recursion for calls to m whenever
there is some method m′ in a subclass C′ that calls m on
this , and some subclass C′′ of C′ overrides m, and that
subclass either doesn’t override m′ or makes a super call
to m′. The analysis conservatively checks this property,
and determines that the method should be annotated open
whenever the property holds.

5. Formalization
We would like to define the semantics of Selective Open

Recursion precisely, and use formal techniques to prove that
Selective Open Recursion eliminates the fragile base class
problem. A standard technique, exemplified by Feather-
weight Java [9], is to formalize a core language that cap-
tures the key semantic issues while ignoring complicating
language details. We have formalized Selective Open Recur-
sion as Featherweight OpenJava (FOJ), a core language based
on Featherweight Java (FJ).

Featherweight OpenJava makes a number of simplifica-
tions relative to the full Java language. As in FJ, the model
omits interfaces, inner classes, and some statement and ex-
pression forms, since these constructs can be written in terms
of more fundamental ones. These omissions make the formal
system simple enough to permit effective reasoning, while
still capturing the core of our Selective Open Recursion pro-
posal.

In fact, Featherweight OpenJava is almost indistinguish-
able from the FJ Proposal–it adds only the open keyword
and constructs for modeling static dispatch when non-open
methods invoked on this . For completeness, we include all
the relevant definitions and briefly discuss their semantics.
The reader who is already familiar with Featherweight Java
may wish to read only the paragraphs in the next few sec-
tions marked “New Constructs.”

CL ::= class C extends D { C f ; K M }

K ::= C(D g, C f){ super (g); this .f = f ; }

M ::= [open] C m(C x) { return e; }
e ::= x | new C(e)

| e.f | (C) e | e.m(e)
| e.C::m(e)

v ::= new C(v)

Γ ::= x 7→ C

Figure 4: Featherweight OpenJava Syntax

5.1 Syntax
Figure 4 shows the syntax of FOJ. The metavariables C,

D, and E range over class names; f and g range over field
names; v ranges over values; e ranges over expressions;
x ranges over variable names; and m ranges over method
names. As a shorthand, an overbar is used to represent a
sequence.

In FOJ, each class extends another class, possibly the pre-
defined class Object . Each class defines a set of fields, con-
structors, and methods. Constructors just assign the class’s
fields to the constructor arguments, while the bodies of meth-
ods return a single expression. Expressions include object
creation expressions, field reads, casts, and method calls. The
predefined class Object has no fields or methods.

The result of computation is a value v, which is an object
creation expression with values for all the object’s fields. The
set of variables x includes the distinguished variable this
used to refer to the receiver of a method.

Types in FOJ are simply class names, and a typing environ-
ment Γ maps variables x to their types. We assume a fixed
class table CT mapping classes to their definitions. A pro-
gram, then, is a pair (CT, e) of a class table and an expres-
sion.

New Constructs. Featherweight OpenJava allows any
method to be modified by the open keyword, indicating that
open recursion should apply to calls to that method. Open-
Java also includes a construct for static method calls, writ-
ten e.C::m(e), similar to the C++ syntax for super calls. The
static method call form may not appear in the source text of
the program. Instead, when a method is invoked on a class
C, all calls to non-open methods on the current object this
in the body of the method are re-written to use static rather
than dynamic dispatch.

5.2 New Constructs: Expressiveness
We deliberately leave mutable state out of Featherweight

OpenJava because we wish to prove Reynolds’ abstraction
theorem, a strong modularity property, for our system. Prov-
ing an abstraction theorem in the presence of arbitrary mu-
table state is an open problem, although Banerjee and Nau-
mann have proved abstraction for restricted uses of state [3].

This choice might seem to compromise the goals of the pa-
per. We have already observed that if all methods have no ef-
fects, the fragile base class problem cannot occur. It might ap-

5

class List extends Object {
List add(Object o) {

return new Cons(o,this);
}

/* first implementation */
List addAll(List l) {

if (l instanceof Nil) {
return this;

} else {
Cons c = (Cons) l;
return this.add(c.first)

.addAll(c.rest);
}

}

/* second implementation */
List addAll(List l) {

if (l instanceof Nil) {
return this;

} else {
Cons c = (Cons) l;
return new Cons(c.first, this)

.addAll(c.rest);
}

}
}

class Nil extends List {
}

class Cons extends Nil {
Object first;
List rest;

}

class EffectfulCons extends Cons {
List add(Object o) {

this.add(o);
}

}

Figure 5: A purely functional list class with two different
implementations, along with a subclass EffectfulCons
that can distinguish them in Java (but not in our proposal).

pear that Featherweight OpenJava is uninteresting, because
FOJ does not model effects such as mutable state and I/O.
However, FOJ does allow us to model non-termination as an
effect, and non-termination is sufficient to exhibit the fragile
base class problem in Java.

For example, Figure 5 shows a purely functional linked
list class with two possible implementations for the method
addAll . The implementations are identical except that the
first calls add recursively on this , whereas the second in-
lines the body of add into addAll .

From the perspective of a client, these implementations
have identical semantics, and so we would expect that they
should be indistinguishable. However, a client can distin-
guish the two implementations (in Java) by defining sub-
class EffectfulCons that overrides the add method with

Contexts Ctx ::= new C(v1, . . . , vi−1, �, ei+1, . . . , en)
| �.f | �.[C::]m(e) | (C) �
| v.[C::]m(v1, . . . , vi−1, �, ei+1, . . . , en)

fields(C) = C f

new C(v).fi 7→ vi
R-Field

C <: D

(D) new C(v) 7→ new C(v)
R-Cast

mbody(m, C) = (x, e0)

new C(vf).m(v) = [v/x, new C(vf)/this]e0
R-Invk

mbody(m, C) = (x, e0)

v.C::m(v) = [v/x, v/this]e0
R-BoundInvk

e 7→ e′

Ctx[e] 7→ Ctx[e′]
R-Context

Figure 6: Dynamic Semantics

a non-terminating method. This causes the fragile base class
problem, because the addAll method of EffectfulCons
will behave differently depending on which superclass im-
plementation is used. In the first implementation, addAll
invokes add and will therefore continue executing indefi-
nitely. In the second implementation, addAll does not use
add and so it will terminate normally.

In Selective Open Recursion, these two implementations
are in fact indistinguishable, because add is not open and so
the call to add within addAll will always execute the List ’s
implementation of add .

Featherweight OpenJava also doesn’t model other impor-
tant modularity constructs such as private or protected
methods or fields. While these constructs are important for
information hiding, we omit them because they are orthogo-
nal to the fragile base class problem.

The main technical result of this paper is a formal defini-
tion of local equivalence of two implementations, along with a
proof that locally equivalent implementations cannot be dis-
tinguished by any client code. This result guarantees that as
long as open methods are used consistently in different im-
plementations, the fragile base class problem cannot occur.

5.3 Reduction Rules
The evaluation relation, defined by the reduction rules

given in Figure 6, is of the form e 7→ e′, read “expression
e reduces to expression e′ in one step.” We write 7→∗ for the
reflexive, transitive closure of 7→.

Most of the reduction rules are taken directly from Feath-
erweight Java. The R-Field rule looks up the value of field fi

by returning the ith argument to the object constructor. As in
Java (and FJ), the R-Cast rule checks that the cast expression
is a subtype of the cast type.

The method invocation rule R-Invk uses the mbody helper
function (defined in Figure 10) to determine the correct
method body to invoke. The method invocation is replaced
with the appropriate method body. In the body, all occur-

6

CT (C) = class C extends D . . .

C <: D
Subtype-Class

C <: C
Subtype-Reflex

C <: D D <: E
C <: E

Subtype-Trans

Figure 7: Subtyping Rules

Γ ` x : Γ(x)
T-Var

Γ ` e : C

fields(C) = D f C <: D

Γ ` new C(e) : C
T-New

Γ ` e0 : C0 fields(C0) = C f

Γ ` e0.fi : Ci
T-Field

Γ ` e : D
Γ ` (C) e : C

T-Cast

Γ ` e0 : C0 Γ ` e : C
mtype(m, C0) = D → C C <: D

Γ ` e0.m(e) : C
T-Invk

Γ ` e0 : C0 Γ ` e : C
mtype(m, E) = D → C C <: D

C0 <: E

Γ ` e0.E::m(e) : C
T-BoundInvk

Figure 8: Typechecking

rences of the formal method parameters and this are re-
placed with the actual arguments and the receiver, respec-
tively. Here, the capture-avoiding substitution of values v for
variables x in e is written [v/x]e. Finally, the rule R-Context
allows reduction to proceed within an expression. The con-
texts, also shown in Figure 6, define the usual left-to-right
order of evaluation.

New Constructs. The R-BoundInvk rule gives the semantics
of static dispatch. Instead of looking up the method body in
the receiver class, the rule looks up the body in the explicitly
named class.

5.4 Typing Rules
FOJ’s subtyping rules are given in Figure 7. Subtyping is

derived from the immediate subclass relation given by the
extends clauses in the class table CT . The subtyping rela-
tion is reflexive and transitive, and it is required that there be
no cycles in the relation (other than self-cycles due to reflex-
ivity).

Typing judgments, shown in Figure 8, are of the form
Γ ` e : C, read, “In the type environment Γ, expression e has
type C.”

M OK in C fields(D) = D g

K = C(D g, C f) { super(g); this .f = f ; }

class C extends D { C f ; K M } OK
ClassOK

CT (C) = class C extends D . . .
override(m, D, C → C0)

{x : C, this : C} ` e0 : E0 E0 <: C0

C0 m(C x) { return e0; } OK in C
MethOK

Figure 9: Class and Method Typing

The T-Var rule looks up the type of a variable in Γ. The
object creation rule verifies that the parameters to the con-
structor have types that match the types of that class’s fields.
The rule for field reads looks up the declared type of the field
using the fields function defined in Figure 10. The cast rule
simply checks that the expression being cast is well-typed; a
run-time check will determine if the value that comes out of
the expression matches the type of the cast. For simplicity,
we depart from Java and Featherweight Java by not explic-
itly modeling stupid cast errors [9].

Rule T-Invk looks up the invoked method’s type using the
mtype function defined in Figure 10, and verifies that the ac-
tual argument types are subtypes of the method’s argument
types.

New Constructs. The T-BoundInvk rule checks the type of
statically-dispatched method calls. It is identical to the T-
Invk rule for dynamic dispatch, except that it checks that the
type of the receiver is a subtype of the class C to which the
method is dispatched.

5.5 Auxiliary Definitions
Figure 9 shows the rules for typing classes and methods.

The typing rules for classes and methods have the form
“class C is OK,” and “method m is OK in C.” The class rule
checks that the methods in the class are well-formed, and that
the constructor has the required form. The rule for meth-
ods checks that the method body is well typed, and uses the
override function (defined in Figure 10) to verify that meth-
ods are overridden with a method of the same type.

Figure 10 shows the definitions of many auxiliary func-
tions used earlier in the semantics. These definitions are
straightforward and in most cases are derived directly from
rules in Featherweight Java. The fields function looks up the
field declarations in the class and adds them to the declara-
tions inherited from the superclass.

The mtype function looks up the type of a method in the
class; if the method is not present, it looks in the superclass
instead. Finally, the override function verifies that if a super-
class defines method m, it has the same type as the definition
of m in a subclass.

New Constructs. The open predicate is true only for meth-
ods that are declared with the open keyword. The mbody
function looks up the body of a method in much the same
way as mtype does, but it uses the body function defined in

7

fields(Object) = •

CT (C) = class C extends D { C f ; K M }
fields(D) = D g

fields(C) = D g, C f

CT (C) = class C . . . { C f ; K M }
(D m(D x) { return e; }) ∈ M

mtype(m, C) = D → D

CT (C) = class C extends D { C f ; K M }
m is not defined in M

mtype(m, C) = mtype(m, D)

(mtype(m, C) = E → E) =⇒ (D = E ∧D = E)

override(m, C, D → D)

CT (C) = class C extends D { C f ; K M }
open E m(E x){ return e; } ∈ M

open(C, m)

CT (C) = class C . . . { C f ; K M ; }
(D m(D x) { return e; }) ∈ M

mbody(m, C) = (x, body(C, e))

CT (C) = class C extends D { C f ; K M }
m is not defined in M

mbody(m, C) = mbody(m, D)

Figure 10: Auxiliary Definitions

Figure 11 in order to implement the static-dispatch seman-
tics of Selective Open Recursion. The body function leaves
most expressions unchanged, including object creation, field
accesses, and casts. Method calls are left unchanged if the
receiver is not this , or if the method being called is open .
If the call is to a non-open method invoked on the current
object this , the call is replaced with a call that is statically
dispatched to the current class C.

5.6 Type Soundness
The type soundness theorems for our variant of Feath-

erweight Java are stated exactly as in the original system.
The only differences are additional cases in the progress and
preservation theorems to handle statically bound method in-
vocations. We omit the full proofs because they are tedious
and similar to the original system.

Theorem 1 (Type Preservation)
If ∅ ` e : C and e 7→ e′, then there exists a D <: C such that
∅ ` e′ : D.

Proof: By induction over the derivation of e 7→ e′. �

e′ = body(C, e)

body(C, new D(e)) = new D(e′)
Body-New

body(C, e) = e′

body(C, e.f) = e′.f
Body-Field

body(C, e) = e′

body(C, (D) e) = (D) e′
Body-Cast

(e 6= this ∨ open(C, m))
body(C, e) = e′ e′ = body(C, e)

body(C, e.m(e)) = e′.m(e′)
Body-Meth

e′ = body(C, e) ¬open(C, m)

body(C, this .m(e)) = this .C::m(e′)
Body-Self

Figure 11: Method Body Translation

Theorem 2 (Progress)
If ∅ ` e : C then either

• e is a value, or

• e = Ctx[(D) new E(v)] with E 6<: D, or

• e 7→ e′ for some e′.

Proof: By induction over the derivation of ∅ ` e : C. �

5.7 Local Equivalence
We would like to prove an abstraction property, stating

that clients cannot distinguish between two different but se-
mantically equivalent implementations of a library. To lay
the groundwork for the abstraction property, we define a lo-
cal observational equivalence relation that defines a precise no-
tion of equivalence between two library implementations.

The rules for local observational equivalence are given in
Figure 12. Two class tables are equivalent if they define the
same set of class names and the implementations for corre-
sponding class names are observationally equivalent. Two
class implementations are equivalent if they have the same
superclass name, the same sets of fields and method names,
and their corresponding method implementations are ob-
servationally equivalent. Two methods are observationally
equivalent if, for all possible arguments to the method, the
method bodies substituted with the appropriate arguments
behave in an observationally equivalent way.

Two expressions are observationally equivalent if they ex-
ecute in bisimilar ways with respect to dynamically dis-
patched method calls. More specifically, two expressions are
equivalent if they both reduce to the same value (rule Eq-Val)
or if they both result in cast errors (rule Eq-Error), or if they
both diverge (rule Eq-Diverge). While they are executing (to-
wards a value, error, or divergence), they can execute in any
way as long as they always dynamically dispatch to the same
functions at corresponding points in their execution. We for-
malize this execution requirement with three rules.

Rule Eq-Stat allows the two expressions to each take any
number of steps excluding the dynamic dispatch rule R-Invk,

8

domain(CT1) = domain(CT2)
∀C ∈ domain(CT1) : (CT1, C) ' (CT2, C)

CT1 ' CT2
Eq-CT

CT1(C) = class C extends D { C f ; K M }
CT2(C) = class C extends D { C f ; K M ′ }

|M | = |M ′|
∀i ∈ {1..|M |} . (CT1, D, Mi) ' (CT2, D, M ′

i)

(CT1, C) ' (CT2, C)
Eq-Cls

∀v such that ∅ ` v : C .
(CT1, [v/x]body(D, e))

≈ (CT2, [v/x]body(D, e′))

(CT1, D, C m(C x) { return e; })
' (CT2, D, C m(C x) { return e′; })

Eq-Meth

(CT1, v) ≈ (CT2, v)
Eq-Val

E 6<: D E′ 6<: D′

(CT1, Ctx1[(D) new E(v)])
≈ (CT2, Ctx2[(D

′) new E′(v′)])

Eq-Error

CT1 ` e1
stat7→

∗
e′1

CT2 ` e2
stat7→

∗
e′2

(CT1, e
′
1) ≈ (CT2, e

′
2)

(CT1, e1) ≈ (CT2, e2)
Eq-Stat

(CT1, Ctx1 : C) ≈ (CT2, Ctx2 : C)
CT1; ∅ ` v.m(v) : C

(CT1, Ctx1[v.m(v]) ≈ (CT2, Ctx2[v.m(v])
Eq-Dispatch

e1 and e2 diverge according to
Eq-Stat and Eq-Dispatch

(CT1, e1) ≈ (CT2, e2)
Eq-Diverge

∀v′ such that ∅ ` v′ : C′ and C′ <: C .
(CT1, Ctx1[v

′]) ≈ (CT2, Ctx2[v
′])

(CT1, Ctx1 : C) ≈ (CT2, Ctx2 : C)
Eq-Context

Figure 12: Local Equivalence

as long as the resulting two expressions are also observation-
ally equivalent. The stat7→

∗
relation thus represents the 7→∗ re-

lation without the R-Invk rule.
Rule Eq-Dispatch allows two observationally equivalent ex-

pressions to take a single R-Invk reduction with method calls
that are identical in the receiver values, the argument values,
and the name of the methods called. The equivalence defi-
nition in Figure 12 is local in that it does not model the the
execution of the called method in the observational equiv-
alence framework. Since the called method might be de-
fined in client code, not in the library itself, we cannot di-
rectly model its behavior using only the local definitions in
the library. Instead, we ensure that for all values the method
could possibly return (as determined by the return type C

(CT1, v) ∼= (CT2, v)
Bi-Val

E 6<: D E′ 6<: D′

(CT1, Ctx1[(D) new E(v)])
∼= (CT2, Ctx2[(D

′) new E′(v′)])

Bi-Error

CT1 ` e1
stat7→

∗
e′1

CT2 ` e2
stat7→

∗
e′2

(CT1, e
′
1) ∼= (CT2, e

′
2)

(CT1, e1) ∼= (CT2, e2)
Bi-Stat

CT1 ` Ctx1[v1.m(v1)] 7→ e′1
CT2 ` Ctx2[v2.m(v2)] 7→ e′2

(CT1, e
′
1) ∼= (CT2, e

′
2)

(CT1, Ctx1[v1.m(v1)]) ∼= (CT2, Ctx2[v2.m(v2)])
Bi-Dispatch

e1 and e2 diverge according to
Bi-Stat and Bi-Dispatch

(CT1, e1) ∼= (CT2, e2)
Bi-Diverge

Figure 13: Global Equivalence

of the method), the contexts will execute with that value in
observationally equivalent ways. Equivalence of contexts is
formally defined in the last rule, Eq-Context.

5.8 Global Equivalence
We wish to prove that given any two observationally

equivalent libraries, any client code will behave equivalently
when run against these two libraries. Figure 13 defines a no-
tion of equivalence that is more global than local equivalence
in that it tracks the execution of an expression through dy-
namic dispatch. Global equivalence is defined in the same
way as local equivalence in rules Bi-Val, Bi-Error, Bi-Stat, and
Bi-Diverge. However, the rule for dynamic dispatch checks
that the actual bodies of the called methods execute in bisim-
ilar ways, rather than just ensuring that the result of the
method call will be handled in equivalent ways. Bisimula-
tion thus provides a complete, global picture of whether two
clients behave identically or not.

5.9 Abstraction
The abstraction theorem states that if two libraries CT1 and

CT2 are locally equivalent, then no matter what well-typed
client code e we write, that client will execute in a globally
equivalent way against both libraries. More formally:

Theorem 3 (Client Abstraction)
If CT1 ' CT2, then ∀e such that CT1, ∅ ` e : C and CT2, ∅ `
e : C, we have (CT1, e) ∼= (CT2, e).

Proof:
We prove the theorem by showing that execution of

(CT1, e) and (CT2, e) preserves an invariant, and that all ex-
ecutions that are compatible with that invariant also conform
to the definition of global equivalence.

The invariant states that the two executing expressions
can be expressed in the form Ctx0(..(Ctxn(e))..) and
Ctx′0(..(Ctx′n(e′))..), for some n, e, e′, Ctx0..n, Ctx′0..n. We

9

also have e ≈ e′, and ∀i ∈ {1..n} we have (Ctxi : Ci) ≈
(Ctx′i : Ci) where ∅ ` Ctxi+1(..(Ctxn(e))..) : Ci.

This invariant is initially true, with the expressions e = e′,
and n = 0.

For any expression in the form described by the invariant,
one of the following will be true, by the definition of ≈:

• Case Eq-Val: e = e′ = v and v is a value. If n = 0, then
execution halts with the value v. Otherwise, we can re-
duce n by one, let e = Ctxn[v], and let e′ = Ctx′n[v]; by
assumption these contexts are locally equivalent, so the
new expressions e and e′ are as well. Thus, the overall
expression obeys the invariant, so we may continue.

• Case Eq-Error: Both e and e′ have a cast error at the
current locus of execution. Execution therefore halts
with a cast error.

• Case Eq-Stat: In this case, e and e′ each take one or more
execution steps, without including a dynamic dispatch,
resulting in another state where e ≈ e′. The resulting
expression obeys the overall invariant.

• Case Eq-Dispatch: In this case, e and e′ reach a dynamic
dispatched function call with the same receiver and ar-
gument values. We increase n by 1, and add the con-
text of the function call to the stack of contexts, noting
that the function call contexts must be locally equiva-
lent according to the rule. The new expression becomes
the body of the looked-up function in each class table,
with the receiver and argument values substituted ap-
propriately. Since the class tables were locally equiva-
lent, the substituted method bodies e and e′ must also
be locally equivalent. Thus the whole expression obeys
the invariant, and we may continue with execution.

• Case Eq-Diverge: Both e and e′ diverge without making
any further dynamic dispatches. The overall expres-
sion thus diverges in the same way.

In all the cases shown above, the invariant is maintained
by execution.

Now, by inspection we note that repeated application of
the cases shown above results in an execution sequence that
is compatible with the rules for global equivalence. The over-
all expressions execute in lockstep with respect to dispatches,
taking any number of non-dispatching steps in between. Ex-
ecution either diverges according to this pattern, or it termi-
nates in an error or in two equal values. Thus, the original
expression e executes in a globally equivalent way against
either class table.

�

We would like to strengthen the abstraction theorem to al-
low us to not only define an expression to evaluate in the con-
text of two libraries, but also to add new classes that might be
subclasses of classes in the two libraries. The library abstrac-
tion theorem states that if two libraries are locally equivalent,
then no matter what well-typed classes we add that build on
the library, these classes will be locally equivalent no matter
which library they are compiled against. More formally:

Theorem 4 (Library Abstraction)
If CT1 ' CT2, then ∀CT ′ such that CT1∪CT ′ OK and CT1∪
CT ′ OK, we have CT1 ∪ CT ′ ' CT1 ∪ CT ′.

Proof outline. For each method in CT ′, we apply rea-
soning similar to that in the Client Abstraction theorem to
show that the method body expression e executes in an lo-
cally equivalent way regardless of what library it is compiled
against. Since the method bodies are textually equal, it is un-
surprising that they behave equivalently.

By assumption, all the methods and classes in CT1 were lo-
cally equivalent to the corresponding structures in CT2, and
since the local equivalence rules are local and do not depend
on any definitions not in CT1 or CT2, this property continues
to hold in the extended systems. Thus, the extended class ta-
bles are also locally equivalent.

5.10 Applying Abstraction
We can apply the definition of local equivalence and the

abstraction theorem to show that the two definitions of List
in Figure 5 are indistinguishable by clients in our system. It
is easy to show that the addAll methods are locally equiv-
alent. The only difference in the methods is that the first
method makes a statically-dispatched call to add , which im-
mediately reduces to the body of the add function, which is
exactly the code used in the second method. By the abstrac-
tion theorem, no client can distinguish the two implementa-
tions, i.e. they are globally equivalent. Thus the fragile base
class problem cannot occur, and the developer of List is free
to switch between these two implementations.

In contrast, under the standard Java semantics (where ev-
ery method is treated as being open), these two implemen-
tations are not locally equivalent. This is because the call to
add is dynamically dispatched in Java, allowing subclasses
(such as EffectfulCons) to distinguish its behavior from
the other implementation which does not make this dynam-
ically dispatched call.

As this discussion implies, our abstraction theorem is true
for plain Java programs under the assumption that every
method is conceptually marked as open . However, the theo-
rem is much less meaningful for plain Java, because so many
implementation changes are prohibited by the abstraction
theorem when every method is open . It is only the pres-
ence of non-open methods that allows a library developer to
evolve the libraries implementation in significant ways.

In summary, this example together with the abstraction
property shows how our solution avoids the fragile base
class problem, allowing developers to make more changes
to base class code, while still supporting open recursion se-
mantics where they are needed.

6. Related Work
A significant body of related research focuses on docu-

menting the dependencies between methods in a specializa-
tion interface. Kiczales and Lamping proposed that a method
should document which methods it depends on, so that sub-
classes can make accurate assumptions about the superclass
implementation [10]. Steyaert et al. propose a similar ap-
proach in a more formal setting [15]. Ruby and Leavens
suggest documenting method call dependencies as part of a
broader focus on modular reasoning in the presence of inher-
itance [14]. They also document a number of design guide-
lines that are applicable to the setting of Selective Open Re-
cursion.

A common weakness of the “dependency documentation”
approaches described above is that they solve the fragile
base class problem not by hiding implementation details,

10

but rather by exposing them. Since the calling patterns of
a class are part of the subclassing interface–and since sub-
classes may depend on them–making significant changes to
the implementation of the class become impossible. Steyaert
et al. acknowledge this and suggest documenting only the
“important method calls,” but the fragile base class problem
can still occur unless unimportant method calls are hidden
from subclasses using a technique like ours. Our work re-
quires that calling patterns be maintained for calls to open
methods, but does not impose this requirement for non-open
methods, allowing a much wider range of implementation
changes.

Bloch, Szyperski, and others suggest using delegation in
place of inheritance as a way of avoiding the fragile base class
problem [4, 16]. However, as Szyperski notes, not all uses
of inheritance can be replaced by delegation because open
recursion is sometimes needed [16]. Selective Open Recur-
sion provides a middle ground between inheritance and del-
egation, providing open recursion when it is needed but the
more modular delegation semantics where it is not.

Mikhajlov and Sekerinski consider a number of different
ways in which an incorrect use of inheritance can break a re-
finement relationship between a class and its subclasses [11].
They prove a flexibility theorem showing that under cer-
tain conditions, when a superclass C is replaced with a new
implementation D, then C’s subclasses still implement re-
finements of the original implementation C. Their results,
however, do not appear to guarantee that the semantics of
C’s subclasses are unaffected by the new implementation D,
which is the contribution of our work.

A proof of an abstraction property for a full object-oriented
language must not only deal with the fragile base class prob-
lem, but also with the problems caused by shared mutable
state. Banerjee and Naumann have shown how abstraction
can be enforced in the presence of mutable state by encapsu-
lating the state within an object using ownership [3]. Their
notion of ownership is quite restrictive; we are currently try-
ing to generalize their result to more flexible ownership sys-
tems such as Ownership Domains [2]. Recent work on sepa-
ration logic also shows promise for modular reasoning in the
presence of shared mutable state [12].

Our use of static dispatch for calls on this is related to
the freeze operator provided by module systems such as Jig-
saw [6]. The freeze operation statically binds internal uses of
a module declaration, while allowing module extensions to
override external uses of that declaration.

Our solution to the fragile base class problem was in-
spired by our earlier work on a related modularity problem
in aspect-oriented programming [1]. Just as a CountingSet
subclass of Set can observe whether addAll is imple-
mented in terms of add , a Counting aspect can be defined
that uses advice to make the same observation. Our solu-
tion there was to prohibit aspects from advising internal calls
within a class or module–just as we solve the fragile base
class problem by using static dispatch to prevent subclasses
from intercepting implementation-dependent calls in their
superclass. In the aspect-oriented setting, we allow modules
to export pointcuts that act as disciplined extension points,
similar to open methods. Both abstraction proofs rely on a
bisimilar execution with respect to pointcuts and open meth-
ods, respectively.

Relative to previous work, we believe ours is the first to ad-
dress the fragile base class problem by distinguishing meth-

ods for which open recursion is needed from methods for
which it is not. Ours is also the first to formally prove an
abstraction property in the presence of open recursion, stat-
ing that subclasses are unaffected by semantics-preserving
changes to the superclass.

7. Conclusion
This paper argued that the fragile base class problem oc-

curs because current object-oriented languages do not dis-
tinguish internal method calls that are invoked for mere con-
venience from those that are invoked as explicit extension
points for subclasses. We proposed to make this distinction
explicit by labeling as open those methods to which open
recursion should apply. We used a formal model to prove,
for the first time, an abstraction property for objects stating
that locally equivalent implementations of a library cannot
be distinguished by that library’s clients. Our results mean
that library designers can freely change many aspects of a li-
brary’s implementation without the danger of breaking sub-
class code.

8. Acknowledgments
I thank Craig Chambers, Todd Millstein and Frank Pfen-

ning for their feedback on earlier drafts of this material.

9. References
[1] J. Aldrich. Open Modules: A Proposal for Modular

Reasoning in Aspect-Oriented Programming. In
Foundations of Aspect Languages, March 2004.

[2] J. Aldrich and C. Chambers. Ownership Domains:
Separating Aliasing Policy from Mechanism. In
European Conference on Object-Oriented Programming,
June 2004.

[3] A. Banerjee and D. A. Naumann. Representation
Independence, Confinement, and Access Control. In
Principles of Programming Languages, January 2002.

[4] J. Bloch. Effective Java. Addison-Wesley, Reading,
Massachusetts, 2001.

[5] B. Bokowski and A. Spiegel. Barat–A Front-End for
Java. Freie Universitt Berlin Technical Report B-98-09,
1998.

[6] G. Bracha. The Programming Language Jigsaw: Mixins,
Modularity and Multiple Inheritance. Ph.D. Thesis,
Dept. of Computer Science, University of Utah, 1992.

[7] E. Ernst. Family Polymorphism. In European Conference
on Object-Oriented Programming, June 2001.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[9] A. Igarashi, B. Pierce, and P. Wadler. Featherwieght
Java: a Minimal Core Calculus for Java and GJ. In
Object-Oriented Programming Systems, Languages, and
Applications, November 1999.

[10] G. Kiczales and J. Lamping. Issues in the Design and
Documentation of Class Libraries. In Object-Oriented
Programming Systems, Languages, and Applications, 1992.

[11] L. Mikhajlov and E. Sekerinski. A Study of the Fragile
Base Class Problem. In European Conference on
Object-Oriented Programming, 1998.

[12] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation
and Information Hiding. In Principles of Programming

11

Languages, January 2004.
[13] D. L. Parnas. On the Criteria to be Used in

Decomposing Systems into Modules. Communications of
the ACM, 15(12):1053–1058, December 1972.

[14] C. Ruby and G. T. Leavens. Safely Creating Correct
Subclasses without Seeing Superclass Code. In
Object-Oriented Programming Systems, Languages, and
Applications, October 2000.

[15] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse
Contracts: Managing the Evolution of Reusable Assets.
In Object-Oriented Programming Systems, Languages, and
Applications, October 1996.

[16] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. ACM Press and
Addison-Wesley, New York, NY, 1998.

12

