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ABSTRACT
Transpilers convert source code between programming languages.
With the rise of new high-level programming languages, transpilers
are ideal tools to speedup the conversion of libraries written in more
established languages to newer and/or less popular ones, fostering
their adoption.
Julia is a recently introduced programming language that targets
various application areas of the widely popular Python language.
Unfortunately, it still lacks many of the high-quality libraries found
in Python. To speedup the development of libraries, we propose
extending the PyJL transpiler to translate Python source code into
human-readable, maintainable, and high-performance Julia source
code.
Despite being at an early development stage, our preliminary results
show that PyJL generates human-readable code that can achieve
good performance with minor changes.

CCS CONCEPTS
• Software and its engineering→ Source code generation; •
General and reference → Cross-computing tools and tech-
niques.
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1 INTRODUCTION
A generic definition of a transpiler is a tool that transforms input
source code into output source code, where the input and output
source code can be written in the same or in different programming
languages. The term transformation is relatively broad, and many
solutions use more specific concepts to categorize different transpi-
lation approaches. DMS [3], a tool that focuses on the automatic
management of large software solutions, uses the concept of Design
Maintenance. Other tools in the area of Safety-Critical Computing
[28] use the concept of Source Code Manipulation to implement
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fault-tolerance mechanisms. In the context of this research, we fo-
cus on the topic of Source-to-Source Translation, where transpilers
translate source code from an input language to a target language.

The first transpiler was developed in 1978 to provide compatibil-
ity between an 8-bit and a 16-bit processor. It was called CONV86 [7]
and was developed by Intel to translate assembly source code from
the 8080/8085 to the 8086 processor. At the time, many other tran-
spilers were developed with a similar purpose, such as TRANS86
and XLT86 [30]. Nowadays, with programmers developing soft-
ware in higher-level programming languages, it makes sense to
have transpilers operate at this level.

In recent years, we have seen the rise of many new high-level
programming languages, such as Rust, Go, TypeScript and more.
Among them is the Julia programming language, which claims
to have the performance of C, the ease of use of Python, and the
macro capabilities of Lisp, among others. However, Julia currently
lacks the large library sets found in more established programming
languages. Converting libraries from these languages to Julia would
allow programmers to benefit from extended library support and
from Julia’s performance on modern hardware.

Manually translating large code-bases is a difficult task and re-
quires substantial resources. For instance, the Commonwealth Bank
of Australia converted its code-base from COBOL to Java, spending
$750 million over five years. In this regard, manually translating
Python’s large library set would be an enormous challenge. Using a
transpiler to convert libraries automatically would benefit program-
mers. However, automatic translation is a challenge for a transpiler,
which we will discuss in the following section.

2 AUTOMATIC TRANSLATION
Automating the translation between source and target languages
is addressed with differentiating perspectives. LinJ [18] aims at a
fully automatic translation of Common Lisp to Java source code.
JSweet [24] translates Java to JavaScript and preserves JavaDoc
documentation in JSDoc. Other tools, such as the Fortran-Python
two-way transpiler [5], intentionally require manual intervention
and request the programmer to annotate the input Python source
code with type hints before translating it to Fortran.

We consider that automating the translation process is relevant,
as the goal is to translate libraries. Furthermore, since the aim is
to generate human-readable and maintainable code, the transpiler
needs to translate language syntax and semantics as programmers
would, by preserving the pragmatics of Julia.

To translate language syntax and semantics, we need to consider
how different constructs map to the target language. As an example,
consider the following code written in Python:
ls1 = [1,2]
ls2 = [3,4]
ls_sum = ls1 + ls2
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Despite the fact that Julia has identical syntax for assignments,
arrays, and arithmetic operators, executing this example in Julia
would not yield the same results. In Julia, adding ls1 and ls2
results in an element-wise addition, producing [4,6]. In Python,
this results in the creation of a new list that contains the elements
of both lists, i.e., [1,2,3,4]. A correct translation to Julia would
use the syntax:
ls_sum = [ls1;ls2]

Furthermore, if the source and target languages promote different
programming paradigms, the transpilation process becomes even
more difficult. For example, consider translating Object-Oriented
(OO) Python code to Julia, where a transpiler would need to map
functionalities such as multiple inheritance, which Julia currently
does not support, and handle method overrides. Python classes
also implement special methods, such as __init__ and __str__.
Additionally, Python also allows redefining built-in operators, such
as arithmetic operators, for class instances. A transpiler that aims
to preserve Julia’s pragmatics would need to map all these func-
tionalities while also generating a target program that is easy to
understand and modify.

The mapping of library calls to the target language should also
be considered. This can be done on a per-function basis, where func-
tions in the input language are mapped to functions with equivalent
behavior in the target language. For instance, calls to the function
np.amax of Python’s NumPy [23] library, which retrieves the max-
imum value of a matrix, should be translated to calls to Julia’s
function maximum.

Type information is another important aspect of transpilation. In
particular, the mapping of dynamically typed languages to statically
typed ones presents a challenge, which was already addressed by
some proposals ([18], [31]). Furthermore, languages such as Julia
may benefit from type annotations to optimize code performance.

A transpiler can translate most use-cases automatically if the
input and target languages have similar levels of abstraction. How-
ever, some cases present ambiguous translation scenarios, which
we will discuss in the following section.

3 DISAMBIGUATE TRANSLATIONS
In the previous section, we discussed several conflicts that a tran-
spiler should automatically resolve. However, there are some trans-
lation scenarios where automatic translation could result in the
generation of convoluted code, which would make the mapping
between the input and the generated source code fuzzy.

In particular, consider transpiling source code written in a dy-
namically typed language, such as Python. This scenario exposes
the limitations of type inference, as we are bound to the information
available at compile time. As an example, consider the following
Python function and its translation to Julia:
def sum_two(x, y):

return x + y

The function sum_two receives two inputs, x and y that can
have arbitrary types. The main problem lies in Python’s + operator,
which applies different operations depending on the runtime types
of its operands, such as integer addition or string concatenations,
among other possibilities.

A possible solution to disambiguate such cases is to request the
programmer to annotate the Python source code using type hints to
assist the translation process. In the previous case, annotating the x
and y arguments using type hints would result in a more accurate
translation.

Generally, it is a good practice to annotate the arguments and re-
turn types of functions, as this conveys the programmer’s intentions
of the source code. Furthermore, functions such as sum_two are too
generic to be able to infer any type information. In such cases, the
transpiler requires type-hints to correctly map the operations to
Julia.

4 JULIA AND PYTHON
After discussing several aspects of transpilation, it is important
that we introduce the two languages that will be the focus of our
project.

Python was introduced more than 30 years ago. Throughout the
years, its popularity has increased among the scientific community
for providing an easy learning curve and an extensive library set.

The Python programming language has many alternative im-
plementations. Two of them are Jython [12] and IronPython [13],
where the first approach compiles Python source code to Java byte-
code that runs on the JVM and the latter compiles Python source
code to IL bytecode for the .NET platform. However, these imple-
mentations lack support for Python 3. CPython, Python’s reference
implementation, is written in the C programming language and has
support for Python’s latest version.

However, CPython suffers from slow performance on modern
hardware due to Python’s implicit dynamism. Programmers who re-
quire highly efficient code usually implement a prototype in Python
and then convert the kernel parts to C. Furthermore, Python’s high-
performance libraries, such as NumPy[23], are also highly optimized
libraries written in C that provide a speedup when compared to
Python’s native implementations. This is commonly referred to as
the two-language problem, where the prototyping language differs
from the main implementation language.

On the other hand, we have the recently introduced Julia pro-
gramming language, which has been proving to be a high-performance
alternative to Python, aiming at solving the two-language problem.
Julia’s simple syntax combined with high performance on modern
hardware makes it a great alternative to Python.

Nowadays, two critical factors for the success of programming
languages are the quality and quantity of available libraries. This
problem was acknowledged in the context of Common Lisp [19],
which, despite being a high-performance and flexible language,
did not become popular due to its absence of libraries and the
difficult mechanisms used to integrate them. Julia has a good library
integration mechanism, which has incentivized the development
of many third-party libraries. However, the available library set is
still small, which is an issue we plan to address.

5 PYJL
The development of this project is based on an existing solution
called Py2Many [29], which includes the PyJL transpiler. Py2Many
provides a generic architecture and implements the necessary tran-
spilation mechanisms to transpile Python to many C-like languages.
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Figure 1: PyJL Architecture

PyJL builds upon that architecture and defines its transpiler imple-
mentation to translate Python to Julia. We opted to use Py2Many,
since it has an active community updating it. Additionally, our
preliminary analysis of the frameworks’ architecture shows that it
is a good starting point to support this project.

Our implementation of PyJL [22] is still in its initial development
stages and far away from our goal of automating the translation
of Python libraries to Julia. The following section describes the
current state of PyJL. We also analyze a performance scenario and
detail our future plans for this project.

5.1 PyJL Architecture
In this section, we describe the stages of the transpilation pipeline
used in PyJL. PyJL uses the same architecture as the Py2Many
framework and adds the necessary functionality to transpile Python
source code to Julia. The language-independent stages apply trans-
formations common to all languages and are not extended by PyJL.
The current pipeline can be seen in figure 1.

The input of this pipeline is Python source code that is parsed
using Python’s ast module1, which generates an Abstract Syntax
Tree (AST). All the Phases in the Pipeline receive an AST as their
input and use the visitor pattern to visit and modify nodes. We now
describe each phase in the transpilation process:

(1) Rewriters can be both language-specific or -independent and
perform modifications in select nodes of the AST. A common
use case of Rewriters is to change the structure of nodes to
match the target language.

(2) Core Transformers are language-independent transformers
that modify the AST with relevant information for the trans-
lation process. The added information includes:

(a) Variable context: Adds all the variables to the node that
represents their scope.

(b) Scope context: Adds a scope attribute to each node in the
AST.

(c) Assignment context: Adds information to node assign-
ments. An example is to annotate nodes that are on the
left-hand side of an assignment, which is useful for opera-
tions that want to verify a node’s position in later phases.

(d) List call information: Adds all list transformation opera-
tions to the scope of the variable referencing the list.

1Abstract Syntax Tree - Python 3.10: https://docs.python.org/3/library/ast.html (Re-
trieved on January 27th, 2022)

(e) Variable Mutability: Analyzes functions to detect mutable
variables.

(f) Nesting levels: Annotates nodes with the respective nest-
ing levels. This is important for languages sensitive to
white spaces.

(g) Annotation flags: Differentiates type annotations and nested
types

(3) Transformers are language-specific and add complementary
information to specific nodes of the AST. An example would
be to add type information to nodes to help with type infer-
ence.

(4) Post Rewriters are rewriters that have dependencies on some
previous phase. Their functionality is identical to that of
Rewriters.

(5) Configuration Rewriters is an addition made to the Py2Many
pipeline for PyJL, which supports configuration files in JSON
and YAML format to modify the AST. This stage is language-
specific.

(6) Transpiler translates language syntax and semantics and
converts the AST to a string representation in the target
language using the information provided by the previous
phases. It is language-specific.

In the pipeline, the Core Transformers phase executes at two
different stages. The first makes this information available for the
stages that perform intermediary transformations. The second guar-
antees that no intermediary transformation overwrites the core
functionalities of Py2Many and makes them available in the Tran-
spiler phase.

After the pipeline has processed the Python source code, it gener-
ates the equivalent source code in the target language. The current
implementation supports the transpilation of one or more files and
performs the changes synchronously.

5.2 Code Annotations
The PyJL transpiler currently has a simple mechanism to allow
programmers to specify code annotations separate from the Python
source code. The goal is to support updates to the input source code
while separately preserving the annotations that affect the transpi-
lation process. This mechanism is integrated in the Configuration
Rewriters phase of the Pipeline and reads YAML or JSON files that
contain annotations, adding them to the corresponding AST nodes.
This mechanism also supports the use of annotations in specific
scopes, where a programmer can, for example, declare a decorator
for a function within a specific class.

This is very beneficial when translating Python libraries to Julia.
If a programmer annotates a Python library directly, this process
will have to be repeated every time a new library version is released.
By separating annotations from the source code, their application
is ensured in subsequent translations.

An addition that is being considered is the integration of a Do-
main Specific Language (DSL) in PyJL, such as LARA [25], which
was designed to be language-independent while offering more pre-
cise code annotations. Similar to the previous approach, the anno-
tations are separate from the source code.

https://docs.python.org/3/library/ast.html
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5.3 Improving Compatibility
To maximize interoperability, programming languages commonly
offer Foreign Function Interfaces (FFIs) to call externally developed
modules or libraries. For instance, Julia’s PyCall[15] provides an FFI
to interoperate with Python. Tools such as PyonR [27] use Racket’s
FFI to call Python functions, and benchmarks reveal that it is a
high-performance alternative to mapping Python’s data model in
Racket.

Despite FFI’s presenting an alternative to translation, we argue
that the translation process brings more benefits in the case of
Julia. Using an FFI results in less maintainable source code, as ex-
ternal calls use a different language syntax. Furthermore, many of
Python’s highly-optimized libraries already have dedicated alterna-
tive implementations in Julia. Translated libraries would preserve
Julia’s syntax and benefit from Julia’s performance on modern
hardware.

Regarding the translation process, we found some cases that
offer no direct mapping from Python to Julia. An example is the
translation of Python’s generator functions, which return a lazy
iterator that implements the producer/consumer pattern. The pro-
ducer generates a new value whenever yield is called and saves its
execution state. When the consumer requests a value, the generator
resumes its execution from the saved state. To demonstrate this
use-case, we present an implementation of the Fibonacci sequence
that returns an infinite iterator:
def fib():

a = 0
b = 1
while True:

yield a
a, b = b, a + b

The producer/consumer pattern can be implemented in Julia
using channels. The producer uses the put! function to add values
to the channel while the consumer uses the take! function to
retrieve them. We include a possible implementation below:
function fib()

Channel() do ch
a = 0
b = 1
while true

put!(ch, a)
a, b = b, a + b

end
end

end

Despite the syntactic similarities, there is an important difference.
Even with the use of unbuffered Channels, the execution will only
block at the first call to put!, allowing side effects in the producer
to be executed before the consumer requests the first value.

A possible alternative that preserves Python’s behavior is to use
the third-party package ResumableFunctions [17]. This package
defines a @resumable macro that is used to simulate the behavior
of generator functions in Julia. A @yield macro is used to replace
Python’s yield keyword. Similar to Python, this implementation
uses a Finite State Machine to save the execution state and resume it

in subsequent calls. An equivalent implementation of the Fibonacci
sequence using this package is the following:
@resumable function fib()

a = 0
b = 1
while true

@yield a
a, b = b, a + b

end
end

Besides preserving Python’s behavior, this approach also has the
benefit of mapping more directly to its equivalent Python imple-
mentation, resulting in improved readability.

Another approach we found that helps the translation process is
to use Julia’s macro capabilities to map Python functionalities. We
are experimenting with the development of a dataclass macro,
that currently offers preliminary support for Python’s dataclass
decorator in Julia. However, we need to account for the fact that Ju-
lia’s macros are expanded at macro-expansion time, which happens
at compile time, while Python decorators operate dynamically at
runtime. We are assessing the limitations of such implementations.

We considered both of these approaches in the development
of our transpiler and found measurable improvements. Whenever
possible, the transpiler should default to using Julia’s native con-
structs. However, we recognize that translating Python’s behavior
may require the addition of new functionalities in Julia or the use
of third-party packages. When the transpiler requires the use of
these mechanisms to ensure correctness, it should always inform
the programmer by producing a corresponding log message.

5.4 Object Mapping
Python allows programmers to use functional programming. How-
ever, it also supports the use of the OO Paradigm. Julia, on the other
hand, is a mostly functional programming language, that does not
fully support the OO paradigm. For the development of PyJL, we
considered mapping Python’s classes to Julia using native Julia
constructs.

Translating Python’s class model to Julia represents a tradeoff. A
positive aspect is that we preserve the intended behavior of Python
programs in Julia. However, this could potentially introduce a high
overhead in computations, due to the added indirection of hav-
ing class representations. We believe that a correct approach that
also offers a choice to programmers is to support two alternative
aproaches:

(1) The first uses Julia constructs to create a class hierarchy
mechanism

(2) The second relies on the use of a third party package called
Classes [26].

The first approach converts classes into mutable structs, which
have the corresponding fields of the class. It also creates abstract
types for each class that are extended by each corresponding struct.
The methods of each class are translated with a self field as their
first parameter, which extends the abstract type mapped to the
corresponding Python class.

The second approach uses the aforementioned Classes package.
This package contains the @classmacro, which defines a hierarchy
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of abstract types and creates the necessary functions for each type,
including a constructor function. This is a method of automating
the previously introduced solution, with the benefit of having a
simpler syntax.

To visualize both mechanisms, we provide a simple class inheri-
tance example written in Python:
class Person:

def __init__(self, name:str):
self.name = name

def get_id(self) -> str:
return self.name

class Student(Person):
def __init__(self, name:str, student_num:int):

super().__init__(name)
self.student_num = student_num

def get_id(self) -> str:
return f"{self.student_num} - {self.name}"

In this example, we define the Person and the Student classes.
Student extends the Person class and adds the student_num field
and a new definition of the get_id function. A possible translation
to Julia using the first approach is the following:
abstract type AbstractPerson end
abstract type AbstractStudent <: AbstractPerson end

mutable struct Person <: AbstractPerson
name::String

end
function get_id(self::AbstractPerson)

return self.name
end

mutable struct Student <: AbstractStudent
name::String
student_num::Int

end
function get_id(self::AbstractStudent)

return "$(self.student_num) - $(self.name)"
end

As was previously mentioned, this involves the creation of one
abstract type for each Python class. In this case we have both
the AbstractPerson and AbstractStudent abstract types which
are inherited by the Person and Student structs respectively. The
functions include a self parameter, which has the type of the corre-
sponding abstract type. The argument types allow Julia’s dispatch
mechanism to select the correct function when performing calls.

The second approach uses Classes.jl to generate Julia source
code that maps much more directly to Python. This package also
uses abstract types to define its hierarchy, which are generated
when using the @class macro. In the previous example, we chose
the names of the abstract types to match the names of the gener-
ated abstract types used in the Classes package, to allow for an
easier evaluation of the generated code. The following represents
an equivalent translation using this package:

using Classes

@class mutable Person begin
name::String

end
function get_id(self::AbstractPerson)

return self.name
end

@class mutable Student <: Person begin
student_num::Int

end
function get_id(self::AbstractStudent)

return "$(self.student_num) - $(self.name)"
end

This approach offers amore direct mapping between the Python and
the Julia source code. However, it still discloses some parts of the
underlying Julia mechanism. For instance, notice how both get_id
functions extend the types AbstractPerson and AbstractStudent
to work in a class hierarchy. Still, it hides the creation of the abstract
types and the creation of the structs to hold object fields, further
blurring the lines between Python and Julia.

To choose between these two implementations, a programmer
could use the provided annotation mechanism. The first approach
would be the default implementation, as it does not require the use
of a third-party library.

One important aspect that is not covered by both of these ap-
proaches is multiple inheritance. This would require implementing
the C3 [2] algorithm in Julia to support Python’s Method Resolu-
tion Order (MRO). For the first release of PyJL we are focused on
supporting single inheritance, which already covers a large subset
of Python implementations.

We also intend to cover the implementation of Python’s special
methods mentioned in section 2, such as __init__ and __str__.
These add necessary functionalities commonly used in Python. A
possible solution is to extend the Classes package and create a
new PyClass package that implements this functionality.

Furthermore, we also intend to map Python’s default class field
values. The current solution is to integrate the Parameters package
[33], which defines a new constructor for each struct that includes
default field values.

5.5 Mapping Dynamic Behavior
The mapping of operators from Python to Julia is frequently de-
pendent on the types of its arguments. However, since Python is a
dynamically typed language, this type information is only known
at runtime.

A possible solution is to create new functions in Julia to sim-
ulate the behavior of Python operators. For instance, in the case
of the sum_two function from section 3, we could map Python’s +
operator to a new py_add function in Julia. A similar approach was
implemented in PyonR [27] to translate Python to Racket. Although
this is a valid approach, the generated code would not preserve the
pragmatics of Julia, which negatively affects maintainability.

An alternative solution is to use a type inference mechanism
to help identify, at transpilation time, the most appropriate Julia
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Figure 2: Performance of N-Body Implementations

operations. As these mechanisms are limited by the information
available at compile time, it might be necessary to judiciously add
type hints to the Python source code. This is also the case of MyPy
[32], which requires type hints in function definitions to check for
the soundness of the code.

A possible alternative is TYPPETE [11], which is an inference
mechanism for Python based on the Z3 theorem prover [8] that
uses a MaxSMT solver to define type constraints.

The approach that is currently being studied is the integration
of the Pytype[10] type-inference mechanism. It generates separate
.pyi stub files that contain type annotations. Optionally, we can
merge these annotations with the original source code using the
provided merge-py tool. This integrates newly added type informa-
tion into the AST and makes the types available for the translation
process.

5.6 Performance
To evaluate the current capabilities of the PyJL transpiler, an im-
plementation of the N-Body Problem was translated to Julia. The
chosen implementation predicts the gravitational interactions of
planets in the solar system, and has both a Python [6] and a Julia
[9] reference version. The results of the translation are publicly
available2. The benchmarks were executed on a machine with an
Intel Core i7 4790K with 16GB of RAM under Windows 10. We
compared the implementations with an input value of 500000 and
chose an average of 10 runs for each test. Also, the obtained output
generated by the program was verified to be identical in Julia and
in Python.

The performance results shown in figure 2 reveal that the initial
translation is not as high-performing as Python and is orders of
magnitude slower than the reference Julia implementation.

After analyzing the generated source code, we discovered that
the slowdown was caused by insufficient type information. The
2Transpiled N-Body Problem: https://github.com/MiguelMarcelino/translated_n_
body_problem

Python function that resulted in the generation of generic Julia
source code is shown below.
def combinations(l):

result = []
for x in range(len(l) - 1):

ls = l[x+1:]
for y in ls:

result.append((l[x],y))
return result

This function receives a list as its argument and generates com-
binations using the elements of that list. It then adds those com-
binations to a new list, which is returned by the function. The
translation performed by the transpiler was the following:
function combinations(l)::Vector

result = []
for x in (0:length(l)-1-1)

ls = l[(x+1+1):end]
for y in ls

push!(result, (l[x+1], y))
end

end
return result

end

Note that the generated Julia function returns a generic array.
In this case, we cannot infer the type of the returned array, as it
is impossible to guarantee that the input list will always have the
same type. This forces the translation to use generic containers that
have considerable overheads when compared to type-specific ones.
The result produced by the combinations function is not type stable,
which impacts the performance of the generated source code.

After manually modifying one line of code by specifying the
necessary type information, we obtained a speedup of 52.6×, mak-
ing the translated Julia code 19.5× faster than the original Python
code. This result can be achieved in one of two ways. We can either
annotate the result array with its corresponding type:
result::Vector{Tuple{Tuple{Vector{Float64},

Vector{Float64},
Float64},

Tuple{Vector{Float64},
Vector{Float64},
Float64}}} = []

or convert the result array, changing the last line of the function
to the following:
return typeof(result[1])[result...]

Regarding the reference Julia implementation, it is relevant to
mention that it is highly optimized and takes advantage of Julia’s
performance characteristics.

5.7 Code Maintainability
The current status of PyJL does not allow us tomakemany claims on
code maintainability. The generated code for the N-Body problem
preserves Python’s code structure and pragmatics. However, this
example maps almost directly to Julia, only requiring minor syntax
changes. More complex Python examples that use native Python

https://github.com/MiguelMarcelino/translated_n_body_problem
https://github.com/MiguelMarcelino/translated_n_body_problem


Transpiling Python to Julia using PyJL ELS’22, March 21–22, 2022, Porto, Portugal

constructs with no direct translation to Julia or use Python’s classes
are required to analyze code readability.

We are also evaluating how the use of third party packages
affects the readability of the generated source code. So far, they
have shown measurable improvements and offer a better mapping
between Python and Julia source code.

A proper evaluation would require user tests to determine if the
generated code is intelligible by programmers. We are considering
this evaluation method to assert that code generated by the PyJL
transpiler is similar to human-written code.

6 EVALUATION
In the context of program translation, it is important to assess the
limitations of transpilers, which will be covered in this section.

Throughout this work, we have acknowledged that there are
translation cases that reach the limitations of type inference. We
have previously shown two examples, the sum_two function in
section 3 and the combinations function in section 5.6, where the
lack of type information results in the generation of generic code.
Attempting to infer types in these situations might be possible but
only if bounded to a given scope, which does not guarantee overall
correctness.

Another problem that we encountered was related to the relia-
bility of type information, where some Python programs include
type hints that do not match the correct attribute or variable types.
One could use Pytype [10], the proposed inference tool, to perform
these checks or even enforce the type annotations provided by
programmers.

Regarding the mapping of Python’s classes to Julia, it is impor-
tant to note that translating Python’s OO behavior to Julia will
always inherent Julia’s mechanisms. We are still relying on multi-
ple dispatch to relate methods to object types, which implies that
there is weaker coupling to objects in Julia. In the case of the trans-
lations shown in section 5.4, the Julia methods are only bound to
the self argument that represents the equivalent Python Class.

7 FUTUREWORK
The PyJL transpiler is still a work in progress and far from our goal
of converting Python libraries to Julia. In this section, we discuss
the plans for the transpiler.

Regarding the mapping of Python’s dynamic behavior to Julia,
the integration of Pytype[10] should make the transpiler less depen-
dent on type hints and help evaluate their soundness. Nonetheless,
it is expected that type hints will still be necessary in function
definitions due to their ambiguity.

The transpiler should also use Julia’s functionalities to enhance
the generated Julia source code. We have previously mentioned
the creation of macros, which would result in the generation of
more maintainable code. However, since macros are executed at
compile-time, and due to Python’s dynamism, this might only be
achievable in some cases.

The performance of the generated source code is another facet
of the translation process that can be optimized. Performing code
optimizations is a topic which is more targeted at software restruc-
turing tools, usually employed in software maintenance. These have

the ability to change the structure of a given program without mod-
ifying its behavior [1]. The generated source code would probably
benefit mostly from perfective maintenance, an approach which
focuses on improving program performance or maintainability [14].

A transpiler developed for code translation can have mechanisms
that account for code restructuring. The programmer could use
the annotation mechanism discussed in section 5.2 to annotate
code segments to restructure. The transpiler could then apply the
intended code transformations during the translation process.

The restructuring process could result in improved code per-
formance. High performance in Julia is achievable through proper
techniques. We present some that were considered:

• Separating Kernel functions: Separate source code into differ-
ent functions to allow the compiler to generate type-specific
code [4].

• Devectorizing expressions: In Julia, loops are very well opti-
mized, making them as fast as loops written in C. We are
currently analyzing the Devectorize [20] package used to
devectorize expressions in favor of using loops.

• Improving Cache hit rate: Optimize the transpiler to rewrite
loops over matrices in column major order to achieve even
higher performance [4].

8 RELATEDWORK
In the area of source-to-source translation, many transpilers have
already used Python as their source language. PyonR [27] explores
the use of two complementary solutions to use Python function-
alities in Racket: (1) using an FFI to call Python’s C functions, (2)
translating Python’s data model to Racket and use the Racket ex-
ecution environment. In terms of performance, calls made to the
FFI ended up taking a very similar time when compared to the
calls made by Python to its C API. The implemented data model
also managed good performance, sometimes outperforming the
equivalent CPython implementations.

Additionally, some approaches that target the improvement of
Python’s performance. One of these [21] explores the use of Rust
as an intermediary, high-performance, and high-level language to
represent Python source code. The PyRS [16] transpiler, which is
now also part of Py2Many, is used to translate Python to Rust. It
is an experimental transpiler that requires manual intervention
in some cases to generate running Rust source code. The Rust
intermediary code can then be translated to a lower-level optimized
target. The performance evaluation of the transpiled code shows
that the transpiled Rust source code achieves better performance
while using less memory than Python.

The two-way Fortran-Python transpiler [5] also aims at improv-
ing Python’s performance by using Fortran as a high-performance
target language. It offers two solutions, where the programmer
can either transpile Fortran code to Python and improve its perfor-
mance or improve the performance of an already existing Python
program. The programmer annotates the kernel functions in Python
with a decorator, which are translated back to Fortran at runtime
to benefit from a high-performance execution environment. The
performance results are similar to those obtained when manually
translating Python to Fortran.



ELS’22, March 21–22, 2022, Porto, Portugal M. Marcelino and A. M. Leitao

The context of library translation has also been discussed in
the development of Jnil [19], that transpiles Java to Common Lisp.
This approach also studied the challenges of preserving language
pragmatics in automatic translation, an important aspect for the
development of PyJL.

9 CONCLUSION
Throughout the years, transpilers have evolved to generate source
code that is not only human-readable, but also hard to distinguish
from human-written programs, which has allowed transpilers to
become alternatives to manual translation.

This work extends the PyJL transpiler to convert Python libraries
to human-readable and modifiable Julia source code. The process
of automating the translation represents a challenge, but it can be
achieved with high-levels of reliability if enough information is
provided in the Python source code. The generated code should
also respect the pragmatics of Julia.

We expect that PyJL further decreases the library gap between
Python and Julia, speeding up library development. The conver-
sion subset should cover widely used Python features, such as
the aforementioned yield construct or the dataclass decorator.
Python’s Data Model should also be mapped to an equivalent Julia
Data Model. This includes mapping Python’s classes to Julia, with
support for single inheritance.

Furthermore, this research also aims at improving the perfor-
mance of the translated libraries. Preliminary results show that
Julia’s compilation strategy can lead to huge performance increases
when some type hints are judiciously added to the generated code.
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