Astrophysics > Earth and Planetary Astrophysics
[Submitted on 20 Sep 2022]
Title:A Rogue Planet Helps Populate the Distant Kuiper Belt
View PDFAbstract:The orbital distribution of transneptunian objects (TNOs) in the distant Kuiper Belt (with semimajor axes beyond the 2:1 resonance, roughly $a$=50-100 au) provides constraints on the dynamical history of the outer solar system. Recent studies show two striking features of this region: 1) a very large population of objects in distant mean-motion resonances with Neptune, and 2) the existence of a substantial detached population (non-resonant objects largely decoupled from Neptune). Neptune migration models are able to implant some resonant and detached objects during the planet migration era, but many fail to match a variety of aspects of the orbital distribution. In this work, we report simulations carried out using an improved version of the GPU-based code GLISSE, following 100,000 test particles per simulation in parallel while handling their planetary close encounters. We demonstrate for the first time that a 2 Earth-mass rogue planet temporarily present during planet formation can abundantly populate both the distant resonances and the detached populations, surprisingly even without planetary migration. We show how weak encounters with the rogue greatly increase the efficiency of filling the resonances, while also dislodging TNOs out of resonance once they reach high perihelia. The rogue's secular gravitational influence simultaneously generates numerous detached objects observed at all semimajor axes. These results suggest that the early presence of additional planet(s) reproduces the observed TNO orbital structure in the distant Kuiper Belt.
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
Litmaps(What is Litmaps?)
scite Smart Citations(What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv(What is alphaXiv?)
CatalyzeX Code Finder for Papers(What is CatalyzeX?)
DagsHub(What is DagsHub?)
Gotit.pub(What is GotitPub?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)
ScienceCast(What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.