hyperbolic functions


The hyperbolic functionsDlmfMathworldPlanetmathsinh (sinus hyperbolicus) and cosh (cosinus hyperbolicus) with arbitrary complex argument x are defined as follows:

sinhx:=ex-e-x2,
coshx:=ex+e-x2.

One can then also also define the functionsMathworldPlanetmathtanh (tangens hyperbolica) and coth (cotangens hyperbolica) in analogy to the definitions of tan and cot:

tanhx:=sinhxcoshx=ex-e-xex+e-x,
cothx:=coshxsinhx=ex+e-xex-e-x.

We further define the sech and csch:

sechx:=1coshx=2ex+e-x,
cschx:=1sinhx=2ex-e-x,

where coshx resp. sinhx is not 0.

Figure 1: Graphs of the hyperbolic functions.

The hyperbolic functions are named in that way because the hyperbola

x2a2-y2b2=1

can be written in parametrical form with the equations:

x=acosht,y=bsinht.

This is because of the equation

cosh2x-sinh2x=1.

There are also addition formulasPlanetmathPlanetmath which are like the ones for trigonometric functionsDlmfMathworldPlanetmath:

sinh(x±y)=sinhxcoshy±coshxsinhy
cosh(x±y)=coshxcoshy±sinhxsinhy.

The Taylor seriesMathworldPlanetmath for the hyperbolic functions are:

sinhx=n=0x2n+1(2n+1)!
coshx=n=0x2n(2n)!.

There are the following between the hyperbolic and the trigonometric functions:

sinx=sinh(ix)i
cosx=cosh(ix).
Titlehyperbolic functions
Canonical nameHyperbolicFunctions
Date of creation2013-03-22 12:38:27
Last modified on2013-03-22 12:38:27
Ownermathwizard (128)
Last modified bymathwizard (128)
Numerical id13
Authormathwizard (128)
Entry typeDefinition
Classificationmsc 26A09
Related topicUnitHyperbola
Related topicComplexTangentAndCotangent
Related topicParallelCurve
Related topicHyperbolicAngle
Related topicExampleOfCauchyMultiplicationRule
Related topicDerivationOfFormulasForHyperbolicFunctionsFromDefinitionOfHyperbolicAngle
Related topicHeavisideFormula
Related topicCatenary
Related topicHyperbolicSineIntegral
Related topicInverseGudermannia
Definessinh
Definescosh
Definestanh
Definescoth
Definessech
Definescsch
Defineshyperbolic sine
Defineshyperbolic cosine
Defineshyperbolic tangent
Defineshyperbolic cotangent
Defineshyperbolic secant
Defineshyperbolic cosecant
close