Kubernetes objects can be created, updated, and deleted by storing multiple object configuration files in a directory and using kubectl apply
to recursively create and update those objects as needed. This method retains writes made to live objects without merging the changes back into the object configuration files. kubectl diff
also gives you a preview of what changes apply
will make.
Install kubectl
.
You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you can use one of these Kubernetes playgrounds:
To check the version, enter kubectl version
.
The kubectl
tool supports three kinds of object management:
See Kubernetes Object Management for a discussion of the advantages and disadvantage of each kind of object management.
Declarative object configuration requires a firm understanding of the Kubernetes object definitions and configuration. Read and complete the following documents if you have not already:
Following are definitions for terms used in this document:
kubectl apply
. Configuration files are typically stored in source control, such as Git.kubectl apply
to write the changes.Use kubectl apply
to create all objects, except those that already exist, defined by configuration files in a specified directory:
kubectl apply -f <directory>
This sets the kubectl.kubernetes.io/last-applied-configuration: '{...}'
annotation on each object. The annotation contains the contents of the object configuration file that was used to create the object.
-R
flag to recursively process directories.Here's an example of an object configuration file:
apiVersion:apps/v1kind:Deploymentmetadata:name:nginx-deploymentspec:selector:matchLabels:app:nginxminReadySeconds:5template:metadata:labels:app:nginxspec:containers:- name:nginximage:nginx:1.14.2ports:- containerPort:80
Run kubectl diff
to print the object that will be created:
kubectl diff -f https://k8s.io/examples/application/simple_deployment.yaml
diff
uses server-side dry-run, which needs to be enabled on kube-apiserver
.
Since diff
performs a server-side apply request in dry-run mode, it requires granting PATCH
, CREATE
, and UPDATE
permissions. See Dry-Run Authorization for details.
Create the object using kubectl apply
:
kubectl apply -f https://k8s.io/examples/application/simple_deployment.yaml
Print the live configuration using kubectl get
:
kubectl get -f https://k8s.io/examples/application/simple_deployment.yaml -o yaml
The output shows that the kubectl.kubernetes.io/last-applied-configuration
annotation was written to the live configuration, and it matches the configuration file:
kind:Deploymentmetadata:annotations:# ...# This is the json representation of simple_deployment.yaml# It was written by kubectl apply when the object was createdkubectl.kubernetes.io/last-applied-configuration:| {"apiVersion":"apps/v1","kind":"Deployment", "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"}, "spec":{"minReadySeconds":5,"selector":{"matchLabels":{"app":nginx}},"template":{"metadata":{"labels":{"app":"nginx"}}, "spec":{"containers":[{"image":"nginx:1.14.2","name":"nginx", "ports":[{"containerPort":80}]}]}}}}# ...spec:# ...minReadySeconds:5selector:matchLabels:# ...app:nginxtemplate:metadata:# ...labels:app:nginxspec:containers:- image:nginx:1.14.2# ...name:nginxports:- containerPort:80# ...# ...# ...# ...
You can also use kubectl apply
to update all objects defined in a directory, even if those objects already exist. This approach accomplishes the following:
kubectl diff -f <directory> kubectl apply -f <directory>
-R
flag to recursively process directories.Here's an example configuration file:
apiVersion:apps/v1kind:Deploymentmetadata:name:nginx-deploymentspec:selector:matchLabels:app:nginxminReadySeconds:5template:metadata:labels:app:nginxspec:containers:- name:nginximage:nginx:1.14.2ports:- containerPort:80
Create the object using kubectl apply
:
kubectl apply -f https://k8s.io/examples/application/simple_deployment.yaml
Print the live configuration using kubectl get
:
kubectl get -f https://k8s.io/examples/application/simple_deployment.yaml -o yaml
The output shows that the kubectl.kubernetes.io/last-applied-configuration
annotation was written to the live configuration, and it matches the configuration file:
kind:Deploymentmetadata:annotations:# ...# This is the json representation of simple_deployment.yaml# It was written by kubectl apply when the object was createdkubectl.kubernetes.io/last-applied-configuration:| {"apiVersion":"apps/v1","kind":"Deployment", "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"}, "spec":{"minReadySeconds":5,"selector":{"matchLabels":{"app":nginx}},"template":{"metadata":{"labels":{"app":"nginx"}}, "spec":{"containers":[{"image":"nginx:1.14.2","name":"nginx", "ports":[{"containerPort":80}]}]}}}}# ...spec:# ...minReadySeconds:5selector:matchLabels:# ...app:nginxtemplate:metadata:# ...labels:app:nginxspec:containers:- image:nginx:1.14.2# ...name:nginxports:- containerPort:80# ...# ...# ...# ...
Directly update the replicas
field in the live configuration by using kubectl scale
. This does not use kubectl apply
:
kubectl scale deployment/nginx-deployment --replicas=2
Print the live configuration using kubectl get
:
kubectl get deployment nginx-deployment -o yaml
The output shows that the replicas
field has been set to 2, and the last-applied-configuration
annotation does not contain a replicas
field:
apiVersion:apps/v1kind:Deploymentmetadata:annotations:# ...# note that the annotation does not contain replicas# because it was not updated through applykubectl.kubernetes.io/last-applied-configuration:| {"apiVersion":"apps/v1","kind":"Deployment", "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"}, "spec":{"minReadySeconds":5,"selector":{"matchLabels":{"app":nginx}},"template":{"metadata":{"labels":{"app":"nginx"}}, "spec":{"containers":[{"image":"nginx:1.14.2","name":"nginx", "ports":[{"containerPort":80}]}]}}}}# ...spec:replicas:2# written by scale# ...minReadySeconds:5selector:matchLabels:# ...app:nginxtemplate:metadata:# ...labels:app:nginxspec:containers:- image:nginx:1.14.2# ...name:nginxports:- containerPort:80# ...
Update the simple_deployment.yaml
configuration file to change the image from nginx:1.14.2
to nginx:1.16.1
, and delete the minReadySeconds
field:
apiVersion:apps/v1kind:Deploymentmetadata:name:nginx-deploymentspec:selector:matchLabels:app:nginxtemplate:metadata:labels:app:nginxspec:containers:- name:nginximage:nginx:1.16.1# update the imageports:- containerPort:80
Apply the changes made to the configuration file:
kubectl diff -f https://k8s.io/examples/application/update_deployment.yaml kubectl apply -f https://k8s.io/examples/application/update_deployment.yaml
Print the live configuration using kubectl get
:
kubectl get -f https://k8s.io/examples/application/update_deployment.yaml -o yaml
The output shows the following changes to the live configuration:
replicas
field retains the value of 2 set by kubectl scale
. This is possible because it is omitted from the configuration file.image
field has been updated to nginx:1.16.1
from nginx:1.14.2
.last-applied-configuration
annotation has been updated with the new image.minReadySeconds
field has been cleared.last-applied-configuration
annotation no longer contains the minReadySeconds
field.apiVersion:apps/v1kind:Deploymentmetadata:annotations:# ...# The annotation contains the updated image to nginx 1.16.1,# but does not contain the updated replicas to 2kubectl.kubernetes.io/last-applied-configuration:| {"apiVersion":"apps/v1","kind":"Deployment", "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"}, "spec":{"selector":{"matchLabels":{"app":nginx}},"template":{"metadata":{"labels":{"app":"nginx"}}, "spec":{"containers":[{"image":"nginx:1.16.1","name":"nginx", "ports":[{"containerPort":80}]}]}}}}# ...spec:replicas:2# Set by `kubectl scale`. Ignored by `kubectl apply`.# minReadySeconds cleared by `kubectl apply`# ...selector:matchLabels:# ...app:nginxtemplate:metadata:# ...labels:app:nginxspec:containers:- image:nginx:1.16.1# Set by `kubectl apply`# ...name:nginxports:- containerPort:80# ...# ...# ...# ...
kubectl apply
with the imperative object configuration commands create
and replace
is not supported. This is because create
and replace
do not retain the kubectl.kubernetes.io/last-applied-configuration
that kubectl apply
uses to compute updates.There are two approaches to delete objects managed by kubectl apply
.
kubectl delete -f <filename>
Manually deleting objects using the imperative command is the recommended approach, as it is more explicit about what is being deleted, and less likely to result in the user deleting something unintentionally:
kubectl delete -f <filename>
kubectl apply -f <directory> --prune
As an alternative to kubectl delete
, you can use kubectl apply
to identify objects to be deleted after their manifests have been removed from a directory in the local filesystem.
In Kubernetes 1.33, there are two pruning modes available in kubectl apply:
Kubernetes v1.5 [alpha]
--prune
with kubectl apply
in allow list mode. Which objects are pruned depends on the values of the --prune-allowlist
, --selector
and --namespace
flags, and relies on dynamic discovery of the objects in scope. Especially if flag values are changed between invocations, this can lead to objects being unexpectedly deleted or retained.To use allowlist-based pruning, add the following flags to your kubectl apply
invocation:
--prune
: Delete previously applied objects that are not in the set passed to the current invocation.--prune-allowlist
: A list of group-version-kinds (GVKs) to consider for pruning. This flag is optional but strongly encouraged, as its default value is a partial list of both namespaced and cluster-scoped types, which can lead to surprising results.--selector/-l
: Use a label selector to constrain the set of objects selected for pruning. This flag is optional but strongly encouraged.--all
: use instead of --selector/-l
to explicitly select all previously applied objects of the allowlisted types.Allowlist-based pruning queries the API server for all objects of the allowlisted GVKs that match the given labels (if any), and attempts to match the returned live object configurations against the object manifest files. If an object matches the query, and it does not have a manifest in the directory, and it has a kubectl.kubernetes.io/last-applied-configuration
annotation, it is deleted.
kubectl apply -f <directory> --prune -l <labels> --prune-allowlist=<gvk-list>
Kubernetes v1.27 [alpha]
kubectl apply --prune --applyset
is in alpha, and backwards incompatible changes might be introduced in subsequent releases.To use ApplySet-based pruning, set the KUBECTL_APPLYSET=true
environment variable, and add the following flags to your kubectl apply
invocation:
--prune
: Delete previously applied objects that are not in the set passed to the current invocation.--applyset
: The name of an object that kubectl can use to accurately and efficiently track set membership across apply
operations.KUBECTL_APPLYSET=true kubectl apply -f <directory> --prune --applyset=<name>
By default, the type of the ApplySet parent object used is a Secret. However, ConfigMaps can also be used in the format: --applyset=configmaps/<name>
. When using a Secret or ConfigMap, kubectl will create the object if it does not already exist.
It is also possible to use custom resources as ApplySet parent objects. To enable this, label the Custom Resource Definition (CRD) that defines the resource you want to use with the following: applyset.kubernetes.io/is-parent-type: true
. Then, create the object you want to use as an ApplySet parent (kubectl does not do this automatically for custom resources). Finally, refer to that object in the applyset flag as follows: --applyset=<resource>.<group>/<name>
(for example, widgets.custom.example.com/widget-name
).
With ApplySet-based pruning, kubectl adds the applyset.kubernetes.io/part-of=<parentID>
label to each object in the set before they are sent to the server. For performance reasons, it also collects the list of resource types and namespaces that the set contains and adds these in annotations on the live parent object. Finally, at the end of the apply operation, it queries the API server for objects of those types in those namespaces (or in the cluster scope, as applicable) that belong to the set, as defined by the applyset.kubernetes.io/part-of=<parentID>
label.
Caveats and restrictions:
--namespace
flag is required when using any namespaced parent, including the default Secret. This means that ApplySets spanning multiple namespaces must use a cluster-scoped custom resource as the parent object.You can use kubectl get
with -o yaml
to view the configuration of a live object:
kubectl get -f <filename|url> -o yaml
When kubectl apply
updates the live configuration for an object, it does so by sending a patch request to the API server. The patch defines updates scoped to specific fields of the live object configuration. The kubectl apply
command calculates this patch request using the configuration file, the live configuration, and the last-applied-configuration
annotation stored in the live configuration.
The kubectl apply
command writes the contents of the configuration file to the kubectl.kubernetes.io/last-applied-configuration
annotation. This is used to identify fields that have been removed from the configuration file and need to be cleared from the live configuration. Here are the steps used to calculate which fields should be deleted or set:
last-applied-configuration
and missing from the configuration file.Here's an example. Suppose this is the configuration file for a Deployment object:
apiVersion:apps/v1kind:Deploymentmetadata:name:nginx-deploymentspec:selector:matchLabels:app:nginxtemplate:metadata:labels:app:nginxspec:containers:- name:nginximage:nginx:1.16.1# update the imageports:- containerPort:80
Also, suppose this is the live configuration for the same Deployment object:
apiVersion:apps/v1kind:Deploymentmetadata:annotations:# ...# note that the annotation does not contain replicas# because it was not updated through applykubectl.kubernetes.io/last-applied-configuration:| {"apiVersion":"apps/v1","kind":"Deployment", "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"}, "spec":{"minReadySeconds":5,"selector":{"matchLabels":{"app":nginx}},"template":{"metadata":{"labels":{"app":"nginx"}}, "spec":{"containers":[{"image":"nginx:1.14.2","name":"nginx", "ports":[{"containerPort":80}]}]}}}}# ...spec:replicas:2# written by scale# ...minReadySeconds:5selector:matchLabels:# ...app:nginxtemplate:metadata:# ...labels:app:nginxspec:containers:- image:nginx:1.14.2# ...name:nginxports:- containerPort:80# ...
Here are the merge calculations that would be performed by kubectl apply
:
last-applied-configuration
and comparing them to values in the configuration file. Clear fields explicitly set to null in the local object configuration file regardless of whether they appear in the last-applied-configuration
. In this example, minReadySeconds
appears in the last-applied-configuration
annotation, but does not appear in the configuration file. Action: Clear minReadySeconds
from the live configuration.image
in the configuration file does not match the value in the live configuration. Action: Set the value of image
in the live configuration.last-applied-configuration
annotation to match the value of the configuration file.Here is the live configuration that is the result of the merge:
apiVersion:apps/v1kind:Deploymentmetadata:annotations:# ...# The annotation contains the updated image to nginx 1.16.1,# but does not contain the updated replicas to 2kubectl.kubernetes.io/last-applied-configuration:| {"apiVersion":"apps/v1","kind":"Deployment", "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"}, "spec":{"selector":{"matchLabels":{"app":nginx}},"template":{"metadata":{"labels":{"app":"nginx"}}, "spec":{"containers":[{"image":"nginx:1.16.1","name":"nginx", "ports":[{"containerPort":80}]}]}}}}# ...spec:selector:matchLabels:# ...app:nginxreplicas:2# Set by `kubectl scale`. Ignored by `kubectl apply`.# minReadySeconds cleared by `kubectl apply`# ...template:metadata:# ...labels:app:nginxspec:containers:- image:nginx:1.16.1# Set by `kubectl apply`# ...name:nginxports:- containerPort:80# ...# ...# ...# ...
How a particular field in a configuration file is merged with the live configuration depends on the type of the field. There are several types of fields:
primitive: A field of type string, integer, or boolean. For example, image
and replicas
are primitive fields. Action: Replace.
map, also called object: A field of type map or a complex type that contains subfields. For example, labels
, annotations
,spec
and metadata
are all maps. Action: Merge elements or subfields.
list: A field containing a list of items that can be either primitive types or maps. For example, containers
, ports
, and args
are lists. Action: Varies.
When kubectl apply
updates a map or list field, it typically does not replace the entire field, but instead updates the individual subelements. For instance, when merging the spec
on a Deployment, the entire spec
is not replaced. Instead the subfields of spec
, such as replicas
, are compared and merged.
Primitive fields are replaced or cleared.
-
is used for "not applicable" because the value is not used.Field in object configuration file | Field in live object configuration | Field in last-applied-configuration | Action |
---|---|---|---|
Yes | Yes | - | Set live to configuration file value. |
Yes | No | - | Set live to local configuration. |
No | - | Yes | Clear from live configuration. |
No | - | No | Do nothing. Keep live value. |
Fields that represent maps are merged by comparing each of the subfields or elements of the map:
-
is used for "not applicable" because the value is not used.Key in object configuration file | Key in live object configuration | Field in last-applied-configuration | Action |
---|---|---|---|
Yes | Yes | - | Compare sub fields values. |
Yes | No | - | Set live to local configuration. |
No | - | Yes | Delete from live configuration. |
No | - | No | Do nothing. Keep live value. |
Merging changes to a list uses one of three strategies:
The choice of strategy is made on a per-field basis.
Treat the list the same as a primitive field. Replace or delete the entire list. This preserves ordering.
Example: Use kubectl apply
to update the args
field of a Container in a Pod. This sets the value of args
in the live configuration to the value in the configuration file. Any args
elements that had previously been added to the live configuration are lost. The order of the args
elements defined in the configuration file is retained in the live configuration.
# last-applied-configuration valueargs:["a","b"]# configuration file valueargs:["a","c"]# live configurationargs:["a","b","d"]# result after mergeargs:["a","c"]
Explanation: The merge used the configuration file value as the new list value.
Treat the list as a map, and treat a specific field of each element as a key. Add, delete, or update individual elements. This does not preserve ordering.
This merge strategy uses a special tag on each field called a patchMergeKey
. The patchMergeKey
is defined for each field in the Kubernetes source code: types.go When merging a list of maps, the field specified as the patchMergeKey
for a given element is used like a map key for that element.
Example: Use kubectl apply
to update the containers
field of a PodSpec. This merges the list as though it was a map where each element is keyed by name
.
# last-applied-configuration valuecontainers:- name:nginximage:nginx:1.16- name: nginx-helper-a # key:nginx-helper-a; will be deleted in resultimage:helper:1.3- name: nginx-helper-b # key:nginx-helper-b; will be retainedimage:helper:1.3# configuration file valuecontainers:- name:nginximage:nginx:1.16- name:nginx-helper-bimage:helper:1.3- name: nginx-helper-c # key:nginx-helper-c; will be added in resultimage:helper:1.3# live configurationcontainers:- name:nginximage:nginx:1.16- name:nginx-helper-aimage:helper:1.3- name:nginx-helper-bimage:helper:1.3args:["run"]# Field will be retained- name: nginx-helper-d # key:nginx-helper-d; will be retainedimage:helper:1.3# result after mergecontainers:- name:nginximage:nginx:1.16# Element nginx-helper-a was deleted- name:nginx-helper-bimage:helper:1.3args:["run"]# Field was retained- name:nginx-helper-c# Element was addedimage:helper:1.3- name:nginx-helper-d# Element was ignoredimage:helper:1.3
Explanation:
args
in the live configuration. kubectl apply
was able to identify that "nginx-helper-b" in the live configuration was the same "nginx-helper-b" as in the configuration file, even though their fields had different values (no args
in the configuration file). This is because the patchMergeKey
field value (name) was identical in both.As of Kubernetes 1.5, merging lists of primitive elements is not supported.
patchStrategy
tag in types.go If no patchStrategy
is specified for a field of type list, then the list is replaced.The API server sets certain fields to default values in the live configuration if they are not specified when the object is created.
Here's a configuration file for a Deployment. The file does not specify strategy
:
apiVersion:apps/v1kind:Deploymentmetadata:name:nginx-deploymentspec:selector:matchLabels:app:nginxminReadySeconds:5template:metadata:labels:app:nginxspec:containers:- name:nginximage:nginx:1.14.2ports:- containerPort:80
Create the object using kubectl apply
:
kubectl apply -f https://k8s.io/examples/application/simple_deployment.yaml
Print the live configuration using kubectl get
:
kubectl get -f https://k8s.io/examples/application/simple_deployment.yaml -o yaml
The output shows that the API server set several fields to default values in the live configuration. These fields were not specified in the configuration file.
apiVersion:apps/v1kind:Deployment# ...spec:selector:matchLabels:app:nginxminReadySeconds:5replicas:1# defaulted by apiserverstrategy:rollingUpdate:# defaulted by apiserver - derived from strategy.typemaxSurge:1maxUnavailable:1type:RollingUpdate# defaulted by apiservertemplate:metadata:creationTimestamp:nulllabels:app:nginxspec:containers:- image:nginx:1.14.2imagePullPolicy:IfNotPresent# defaulted by apiservername:nginxports:- containerPort:80protocol:TCP# defaulted by apiserverresources:{}# defaulted by apiserverterminationMessagePath:/dev/termination-log# defaulted by apiserverdnsPolicy:ClusterFirst# defaulted by apiserverrestartPolicy:Always# defaulted by apiserversecurityContext:{}# defaulted by apiserverterminationGracePeriodSeconds:30# defaulted by apiserver# ...
In a patch request, defaulted fields are not re-defaulted unless they are explicitly cleared as part of a patch request. This can cause unexpected behavior for fields that are defaulted based on the values of other fields. When the other fields are later changed, the values defaulted from them will not be updated unless they are explicitly cleared.
For this reason, it is recommended that certain fields defaulted by the server are explicitly defined in the configuration file, even if the desired values match the server defaults. This makes it easier to recognize conflicting values that will not be re-defaulted by the server.
Example:
# last-applied-configurationspec:template:metadata:labels:app:nginxspec:containers:- name:nginximage:nginx:1.14.2ports:- containerPort:80# configuration filespec:strategy:type:Recreate# updated valuetemplate:metadata:labels:app:nginxspec:containers:- name:nginximage:nginx:1.14.2ports:- containerPort:80# live configurationspec:strategy:type:RollingUpdate# defaulted valuerollingUpdate:# defaulted value derived from typemaxSurge :1maxUnavailable:1template:metadata:labels:app:nginxspec:containers:- name:nginximage:nginx:1.14.2ports:- containerPort:80# result after merge - ERROR!spec:strategy:type: Recreate # updated value:incompatible with rollingUpdaterollingUpdate: # defaulted value:incompatible with "type: Recreate"maxSurge :1maxUnavailable:1template:metadata:labels:app:nginxspec:containers:- name:nginximage:nginx:1.14.2ports:- containerPort:80
Explanation:
strategy.type
.strategy.type
to RollingUpdate
and defaults the strategy.rollingUpdate
values.strategy.type
to Recreate
. The strategy.rollingUpdate
values remain at their defaulted values, though the server expects them to be cleared. If the strategy.rollingUpdate
values had been defined initially in the configuration file, it would have been more clear that they needed to be deleted.strategy.rollingUpdate
is not cleared. The strategy.rollingupdate
field cannot be defined with a strategy.type
of Recreate
.Recommendation: These fields should be explicitly defined in the object configuration file:
Fields that do not appear in the configuration file can be cleared by setting their values to null
and then applying the configuration file. For fields defaulted by the server, this triggers re-defaulting the values.
These are the only methods you should use to change an individual object field:
kubectl apply
.kubectl scale
.Add the field to the configuration file. For the field, discontinue direct updates to the live configuration that do not go through kubectl apply
.
As of Kubernetes 1.5, changing ownership of a field from a configuration file to an imperative writer requires manual steps:
kubectl.kubernetes.io/last-applied-configuration
annotation on the live object.Kubernetes objects should be managed using only one method at a time. Switching from one method to another is possible, but is a manual process.
Migrating from imperative command management to declarative object configuration involves several manual steps:
Export the live object to a local configuration file:
kubectl get <kind>/<name> -o yaml > <kind>_<name>.yaml
Manually remove the status
field from the configuration file.
kubectl apply
does not update the status field even if it is present in the configuration file.Set the kubectl.kubernetes.io/last-applied-configuration
annotation on the object:
kubectl replace --save-config -f <kind>_<name>.yaml
Change processes to use kubectl apply
for managing the object exclusively.
Set the kubectl.kubernetes.io/last-applied-configuration
annotation on the object:
kubectl replace --save-config -f <kind>_<name>.yaml
Change processes to use kubectl apply
for managing the object exclusively.
The recommended approach is to define a single, immutable PodTemplate label used only by the controller selector with no other semantic meaning.
Example:
selector:matchLabels:controller-selector:"apps/v1/deployment/nginx"template:metadata:labels:controller-selector:"apps/v1/deployment/nginx"