
Kђѐѐюј implementation
overview

Guido Bђџѡќћі1
Joan Dюђњђћ1

Michaël PђђѡђџѠ2

Gilles Vюћ AѠѠѐѕђ1

Ronny Vюћ Kђђџ1

http://keccak.noekeon.org/

Version 3.2
May 29, 2012

1STMicroelectronics
2NXP Semiconductors

http://keccak.noekeon.org/

Kђѐѐюј implementation overview

2 / 59

Contents

1 General aspects 7
1.1 Specifications summary . 7
1.2 Bit and byte numbering conventions . 9

1.2.1 Some justification for our choice . 10
1.3 Operation count . 10
1.4 Memory . 12

2 Implementation techniques 13
2.1 Bit interleaving . 13
2.2 The lane complementing transform . 14
2.3 Extending the state for smoother scheduling 15
2.4 Plane-per-plane processing . 16

2.4.1 Early parity . 17
2.4.2 Combining with bit interleaving . 18

2.5 Efficient in-place implementations . 18
2.5.1 Combining with bit interleaving . 19

2.6 Processing slices . 22
2.6.1 Processing consecutive slices . 22
2.6.2 Processing interleaved slices . 23

3 SoĞware 25
3.1 PC and high-end platforms . 25

3.1.1 Using 64-bit instructions . 25
3.1.2 Using SIMD instructions . 26
3.1.3 SIMD instructions and tree hashing . 26
3.1.4 Batch or tree hashing on a graphics processing unit 27

3.2 Small 32-bit platforms . 27
3.2.1 Implementation on a ARM Cortex-M0 and -M3 28

3.3 Small 8-bit platforms . 28
3.3.1 Implementation on a Atmel AVR processor 29

4 Hardware 31
4.1 Introduction . 31
4.2 High-speed core . 31
4.3 Variants of the high-speed core . 33

4.3.1 Kђѐѐюј[r = 1024, c = 576] . 33
4.3.2 Kђѐѐюј[r = 40, c = 160] . 33

4.4 Mid-range core . 34
4.4.1 Description . 34

3 / 59

Kђѐѐюј implementation overview CONTENTS

4.4.2 Results for Kђѐѐюј[r = 1024, c = 576] 35
4.5 Low-area coprocessor . 38

4.5.1 Kђѐѐюј[r = 1024, c = 576] . 40
4.5.2 Kђѐѐюј[r = 40, c = 160] . 40

4.6 FPGA implementations . 40

5 Protection against side-channel aĴacks 43
5.1 Introduction . 43
5.2 Power analysis . 44

5.2.1 Different types of countermeasures . 45
5.2.2 Secret sharing . 46

5.3 SoĞware implementation using two-share masking 46
5.3.1 Simplifying the soĞware implementation 47

5.4 Hardware using three-share masking . 48
5.4.1 One-cycle round architecture . 48
5.4.2 Three-cycle round architecture . 50
5.4.3 Synthesis results . 50

5.5 Computing in parallel or sequentially? . 52

A Change log 59
A.1 From 3.1 to 3.2 . 59

4 / 59

Introduction

This document gives an overview of the implementation aspects of Kђѐѐюј, in soĞware and
hardware, with or without protection against side-channel aĴacks.

Acknowledgments

Wewish to thank (in no particular order) Joachim Strömbergson for useful comments on our
FPGA implementation, Joppe Bos for reporting a bug in the optimized implementation, all
people who contributed to implementations or benchmarks of Kђѐѐюј in hardware or soĞ-
ware, Virgile Landry Nguegnia Wandji for his work on DPA-resistant Kђѐѐюј implemen-
tations, Joris Delclef, Jean-Louis Modave, Yves Moulart and Armand Linkens for giving us
access to fast hardware, Daniel OĴe and Christian Wenzel-Benner for their support on em-
bedded platforms, Renaud Bauvin for his implementation in Python. Francesco Regazzoni
and Bernhard Jungk for fruitful discussions on the hardware implementation.

5 / 59

Kђѐѐюј implementation overview CONTENTS

6 / 59

Chapter 1

General aspects

In this chapter, we first briefly review the Kђѐѐюј specifications formally defined in [10]. We
then detail the bit and byte numbering conventions, followed by general statements about
the operation count and memory usage of Kђѐѐюј.

1.1 Specifications summary

This section offers a summary of the Kђѐѐюј specifications using pseudocode, sufficient to
understand its structure and building blocks. In no way should this introductory text be
considered as a formal and reference description of Kђѐѐюј. For the formal definition of
Kђѐѐюј, we refer to [10].

Any instance of theKђѐѐюј sponge function familymakes use of one of the sevenKђѐѐюј- f
permutations, denoted Kђѐѐюј- f [b], where b ∈ {25, 50, 100, 200, 400, 800, 1600} is the width
of the permutation. These Kђѐѐюј- f permutations are iterated constructions consisting of
a sequence of almost identical rounds. The number of rounds nr depends on the permu-
tation width, and is given by nr = 12 + 2ℓ, where 2ℓ = b/25. This gives 24 rounds for
Kђѐѐюј- f [1600].

Kђѐѐюј- f [b](A)
for i in 0 . . . nr − 1

A = Round[b](A, RC[i])
return A

A Kђѐѐюј- f round consists of a sequence of invertible steps each operating on the state,
organized as an array of 5× 5 lanes, each of length w ∈ {1, 2, 4, 8, 16, 32, 64} (b = 25w). When
implemented on a 64-bit processor, a lane of Kђѐѐюј- f [1600] can be represented as a 64-bit
CPU word.

7 / 59

Kђѐѐюј implementation overview 1. General aspects

Round[b](A, RC)
θ Ѡѡђѝ

C[x] = A[x, 0]⊕ A[x, 1]⊕ A[x, 2]⊕ A[x, 3]⊕ A[x, 4], ∀x in 0 . . . 4
D[x] = C[x− 1]⊕ ROT(C[x + 1], 1), ∀x in 0 . . . 4
A[x, y] = A[x, y]⊕ D[x], ∀(x, y) in (0 . . . 4, 0 . . . 4)

ρ юћё π ѠѡђѝѠ
B[y, 2x + 3y] = ROT(A[x, y], r[x, y]), ∀(x, y) in (0 . . . 4, 0 . . . 4)

χ Ѡѡђѝ
A[x, y] = B[x, y]⊕ ((NOT B[x + 1, y])AND B[x + 2, y]), ∀(x, y) in (0 . . . 4, 0 . . . 4)

ι Ѡѡђѝ
A[0, 0] = A[0, 0]⊕ RC

return A

Here the following conventions are in use. All the operations on the indices are done
modulo 5. A denotes the complete permutation state array and A[x, y] denotes a particular
lane in that state. B[x, y], C[x] and D[x] are intermediate variables. The symbol⊕ denotes the
bitwise exclusive OR, NOT the bitwise complement and AND the bitwise AND operation.
Finally, ROT(W, r) denotes the bitwise cyclic shiĞ operation, moving bit at position i into
position i + r (modulo the lane size).

The constants r[x, y] are the cyclic shiĞ offsets and are specified in the following table.

x = 3 x = 4 x = 0 x = 1 x = 2
y = 2 25 39 3 10 43
y = 1 55 20 36 44 6
y = 0 28 27 0 1 62
y = 4 56 14 18 2 61
y = 3 21 8 41 45 15

The constants RC[i] are the round constants. The following table specifies their values in
hexadecimal notation for lane size 64. For smaller sizes they must be truncated.

RC[0] 0x0000000000000001 RC[12] 0x000000008000808B
RC[1] 0x0000000000008082 RC[13] 0x800000000000008B
RC[2] 0x800000000000808A RC[14] 0x8000000000008089
RC[3] 0x8000000080008000 RC[15] 0x8000000000008003
RC[4] 0x000000000000808B RC[16] 0x8000000000008002
RC[5] 0x0000000080000001 RC[17] 0x8000000000000080
RC[6] 0x8000000080008081 RC[18] 0x000000000000800A
RC[7] 0x8000000000008009 RC[19] 0x800000008000000A
RC[8] 0x000000000000008A RC[20] 0x8000000080008081
RC[9] 0x0000000000000088 RC[21] 0x8000000000008080
RC[10] 0x0000000080008009 RC[22] 0x0000000080000001
RC[11] 0x000000008000000A RC[23] 0x8000000080008008

8 / 59

1. General aspects Kђѐѐюј implementation overview

We obtain the Kђѐѐюј[r, c] sponge function, with parameters capacity c and bitrate r, if
we apply the sponge construction to Kђѐѐюј- f [r + c] and perform specific padding on the
message input. The following pseudocode is restricted to the case of messages that span a
whole number of bytes and where the bitrate r is a multiple of the lane size.

Kђѐѐюј[r, c](M)
Pюёёіћє
P = M||0x01||0x00|| . . . ||0x00
P = P⊕ 0x00|| . . . ||0x00||0x80

Iћіѡіюљіѧюѡіќћ
S[x, y] = 0, ∀(x, y) in (0 . . . 4, 0 . . . 4)

AяѠќџяіћє ѝѕюѠђ
for every block Pi in P

S[x, y] = S[x, y]⊕ Pi[x + 5y], ∀(x, y) such that x + 5y < r/w
S = Kђѐѐюј- f [r + c](S)

SўѢђђѧіћє ѝѕюѠђ
Z = empty string
while output is requested

Z = Z||S[x, y], ∀(x, y) such that x + 5y < r/w
S = Kђѐѐюј- f [r + c](S)

return Z

Here S denotes the state as an array of lanes. The padded message P is organised as
an array of blocks Pi, themselves organized as arrays of lanes. The || operator denotes byte
string concatenation.

1.2 Bit and byte numbering conventions

Internally, the state of Kђѐѐюј- f [b] is organized in three dimensions and its bits are identified
with coordinates x, y ∈ Z5 and z ∈ Zw, for b = 25w and w ∈ {1, 2, 4, . . . , 64}. Externally,
the sponge and duplex constructions require to have a linear numbering of the bits from 0
to b − 1. Here, the bit index i = z + w(5y + x) externally corresponds to the coordinates
(x, y, z) internally.

A lane (i.e., bitswith the same coordinates (x, y)) contains bitswithw consecutive indices.
If an input or output block is organized as lanes, the outer part of the state spans ⌈ r

w⌉ lanes.
In a typical soĞware implementation, the bits in a lane are packed together in a w-bit CPU
word. Thus, this allows to organize the input and output in terms of CPUwords. In addition,
one can implement the operation ρ as a set of CPU word rotations (if the processor supports
it).

When it comes to expressing the bit positions within a CPU word or a byte, or the byte
positions within a CPU word, we take the following conventions.

1. The bitswithin a byte orwithin aCPUword are numbered fromzero onwards, with the
bit number i being the coefficient of 2i when a byte or a word needs to be represented
as an integer.

9 / 59

Kђѐѐюј implementation overview 1. General aspects

2. The byteswithin aCPUword are numbered fromzero onwards, with the byte at offset i
being the coefficient of 256i when awords needs to be represented as an integer (“liĴle-
endian” convention).

The consequence of the first convention is that, as in ρ, the operation consisting of mov-
ing bits of coordinates (x, y, z) to (x, y, z + δ mod w) becomes a rotation “to the leĞ” by δ
positions if the lane is in a CPU word.

The consequence of the two conventions jointly is that the bytes consisting an input block
do not have to be shuffled before being XORed into the state when the state is represented as
an array of lanes on a liĴle-endian processor. Similarly, the bytes consisting an output block
can be taken as is from the state in the same representation.

Note that the SHA-3 API defined by NIST [27] follows the opposite convention for bit
numbering and this is the reason behind the formal bit reordering described in [11].

An example of the formal bit reordering can be found in the files KeccakSpongeIntermedi-
ateValues_*.txt in [8].

1.2.1 Some justification for our choice

In this subsection, we detail our choice of conventions concerning the mapping between the
bits of the Kђѐѐюј- f [b] permutation and their representation in terms of w-bit CPU words
and in the SHA-3 API defined by NIST [27]. (This part can be safely skipped for readers not
interested.)

For the ρ operation to be translated into rotation instructions in the processor, the num-
bering z must be either an increasing or a decreasing function of the bit numbering in the
processor’s conventions. So, up to a constant offset, either z = 0 is the most significant bit
(MSB) and z = w− 1 is the least significant bit (LSB), or vice-versa.

The input bits of the hash function come organized as a sequence of bytes. Within each
block, the message bit i = ibit + 8ibyte is going to be XORed with the state bit i. To avoid re-
ordering bits or bytes and to allow a word-wise XORing, the message bit numbering should
follow the same convention as the state bit numbering. In particular, if z = 0 indicates the
MSB (resp. LSB), ibyte = 0 should indicate the most (resp. least) significant byte within a
word.

Hence, the choice is bound to either follow the liĴle endian or the big endian convention.
We found numbering the bits (or bytes) with increasing powers of 2 (or 256) a bit easier to
express than to follow a decreasing rule. Furthermore, in its call for SHA-3, NIST defined a
reference platform that happens to be liĴle endian [26]. So we decided to follow the conven-
tions detailed above.

The convention in the Update function of NIST’s API is different, and this is the reason
for applying the formal bit reordering described in [11]. It formalizes the chosen translation
between the two conventions, while having a tiny impact on the implementation. In practice,
only the bits of the last byte (when incomplete) of the input message need to be shiĞed.

1.3 Operation count

For Kђѐѐюј, the bulk of the processing goes into the Kђѐѐюј- f permutation and the XOR of
the message blocks into the state. For an input message of l bits, the number of blocks to
process, or in other words, the number of calls to Kђѐѐюј- f , is given by:⌈

l + 2
r

⌉
.

10 / 59

1. General aspects Kђѐѐюј implementation overview

r c Relative performance
576 1024 ÷1.778
832 768 ÷1.231
1024 576 1
1088 512 ×1.063
1152 448 ×1.125
1216 384 ×1.188
1280 320 ×1.250
1344 256 ×1.312
1408 192 ×1.375

Table 1.1: Relative performance of Kђѐѐюј- f [r + c = 1600] with respect to Kђѐѐюј[].

For an output length n smaller than or equal to the bitrate, the squeezing phase does not
imply any additional processing. However, if more output bits are needed, the additional
number of calls to Kђѐѐюј- f for an n-bit output is ⌈ n

r ⌉ − 1.
When evaluating Kђѐѐюј, the processing time is dominantly spent in the evaluation of

Kђѐѐюј- f . In good approximation, the throughput of Kђѐѐюј for long messages is therefore
proportional to r for a given permutation width b. For instances with r + c = 1600, we will
oĞenwrite performance figures for the default bitrate r = 1024. To estimate the performance
for another bitrate, Table 1.1 provides the performance relative to the default bitrate. This
is valid for long messages; for short messages, the processing time is determined by the
required number of calls to Kђѐѐюј- f (e.g., one when l ≤ r− 2).

On a platform supporting operations on w-bit words, each lane can be mapped to such
a word. If the platform supports only smaller, m-bit words, each lane has to be mapped to
b/m such words. There are different kinds of mappings. As long as the same mapping is
applied to all lanes, each bitwise Boolean operation on a lane is translated as b/m instructions
on CPU words. The most straightforward mapping is to take as CPU word i the lane bits
with z = mi . . . m(i + 1)− 1. In that case, the b-bit rotations need to be implemented using a
number of shiĞs and bitwise Boolean instructions. Another possiblemapping, that translates
the b-bit rotations into a series of m-bit CPU word rotation instructions, is introduced in
Section 2.1.

If we use a b-bit platform, the evaluation of Kђѐѐюј- f [b] uses in terms of lane operations

• 76nr XORs,

• 25nr ANDs and 25nr NOTs, and

• 29nr b-bit rotations.

For Kђѐѐюј- f [1600] specifically, this becomes

• 1824 XORs,

• 600 ANDs and 600 NOTs, and

• 696 64-bit rotations.

Some instruction sets propose an instruction that combines theANDandNOToperations
in one operation as in χ, i.e., c ← (NOT a) AND b. If such an instruction is not available on

11 / 59

Kђѐѐюј implementation overview 1. General aspects

a CPU, almost 80% of the NOT operations can be removed by applying a lane complement-
ing transform as explained in Section 2.2, turning a subset of the AND operations into OR
operations.

In [9], we provide a simple implementation (called Simple) that maps a lane to a CPUword of
8, 16, 32 or 64 bits, and hence is suitable for Kђѐѐюј- f [200], Kђѐѐюј- f [400], Kђѐѐюј- f [800]
and Kђѐѐюј- f [1600].

1.4 Memory

In terms of memory usage, Kђѐѐюј has no feedforward loop, as opposed to many other
constructions, and the message block can be directly XORed into the state. This can benefit
applications for which the message is formaĴed on the fly or does not need to be kept aĞer
being hashed. This also applies where the hashing API has to implement a message queue.
In general a message queue must be allocated, which can be avoided for sponge functions
or similar.

The amount of working memory is limited to the state, the round number and some
extra working memory for θ and χ. Five w-bit words of extra working memory allow the
implementation of θ to compute the XOR of the sheets, while they can hold the five lanes of
a plane when χ is being computed.

An efficient memory-constrained implementation technique is presented in Section 2.5.
Examples of implementations that use a limited amount of memory can be found in the
Compact, Compact8, Inplace and Inplace32BI implementations in [9]. Some of these im-
plementations also provide an API with a message queue such as Init, Update and Final,
for which no extra memory needs to be allocated.

12 / 59

Chapter 2

Implementation techniques

In this chapter, we introduce techniques that can be used to optimize soĞware and hardware
implementations, namely bit interleaving, lane complementing, plane-per-plane processing,
efficient in-place evaluation and consecutive or interleaved slices processing.

2.1 Bit interleaving

The technique of bit interleaving consists in coding an w-bit lane as an array of s = w/m
CPUwords of m bits each, with word ζ containing the lane bits with z ≡ ζ (mod s). Here, s
is called the interleaving factor. This technique can be applied to any version of Kђѐѐюј- f to
any CPU with word length m that divides its lane length w.

We first treat the concrete case of 64-bit lanes and 32-bit CPU words, so a factor-2 inter-
leaving. A 64-bit lane is coded as two 32-bit words, one containing the lane bits with even z-
coordinate and the other those with odd z-coordinates. More exactly, a lane L[z] = a[x][y][z]
is mapped onto words U0 and U1 with U0[j] = L[2j] and U1[j] = L[2j + 1]. If all the lanes of
the state are coded this way, the bitwise Boolean operations can be simply implementedwith
bitwise Boolean instructions operating on the words. The main benefit is that the lane trans-
lations in ρ and θ can nowbe implementedwith 32-bitword rotations. A translation of Lwith
an even offset 2τ corresponds to the translation of the two corresponding words with offset
τ. A translation of L with an odd offset 2τ + 1 corresponds to U0 ← ROT32(U1, τ + 1) and
U1 ← ROT32(U0, τ). On a 32-bit processor with efficient rotation instructions, this may give
an important advantage compared to the straightforward mapping of lanes to CPU words.
Additionally, a translation with an offset equal to 1 or −1 results in only a single CPU word
rotation. For Kђѐѐюј- f [1600] specifically, this is the case for 6 out of the 29 lane translations
in each round (5 in θ and 1 in ρ).

More generally, let us consider an interleaving factor s. The words Uζ , with ζ ∈ Zs,
represent the lane L. All the operations on the ζ coordinate are considered modulo s. A
translation of L by τ positions causes each word Uζ to be moved to Uζ ′ with ζ ′ = ζ + τ, and
to be rotated by ⌊ τ

s ⌋+ 1 bits if ζ ′ < τ mod s or by ⌊ τ
s ⌋ bits if ζ ′ ≥ τ mod s.

The bit-interleaving representation can be used in all of Kђѐѐюј- f where the input and
output of Kђѐѐюј- f assume this representation. This implies that during the absorbing the
input blocks must be presented in bit-interleaving representation and during the squeezing
the output blocks aremade available in bit-interleaving representation. When implementing
Kђѐѐюј in strict compliance to the specifications [10], the input blocks must be transformed
to the bit-interleaving representation and the output blocks must be transformed back to
the standard representation. However, one can imagine applications that require a secure
sponge function but no interoperability with respect to the exact coding. In that case one

13 / 59

Kђѐѐюј implementation overview 2. Implementation techniques

may present the input in interleaved form and use the output in this form too. The resulting
function will only differ from Kђѐѐюј by the order of bits in its input and output.

In hashing applications, the output is usually kept short and some overhead is caused by
applying the bit-interleaving transform to the input. Such a transform can be implemented
using shiĞs and bitwise operations. For implementing Kђѐѐюј- f [1600] on a 32-bit CPU, we
must distribute the 64 bits of a lane to two 32-bit words. On some platforms, look-up tables
can speed up this process, although the gain is not always significant.

Several examples of implementations making use of bit interleaving can be found in [9], no-
tably the Reference32BI and Simple32BI implementations. Also, the Optimized32 imple-
mentation can be set to use look-up tables by defining the UseInterleaveTables symbol in
KeccakF-1600-opt32-settings.h. Intermediate values to help debug a bit-interleaved im-
plementation can be found in the file KeccakPermutationIntermediateValues32BI.txt
in [8]. Finally, KђѐѐюјTќќљѠ can generate code that make use of bit interleaving for any
lane size and any (smaller) CPU word size [12].

2.2 The lane complementing transform

The mapping χ applied to the 5 lanes in a plane requires 5 XORs, 5 AND and 5 NOT oper-
ations. The number of NOT operations can be reduced to 1 by representing certain lanes by
their complement. In this section we explain how this can be done.

For the sake of clarity we denote the XOR operation by ⊕, the AND operation by ∧,
the OR operation by ∨ and the NOT operation by ⊕1. Assume that the lane with x = 2 is
represented its bitwise complement a[2]. The equation for the bits of A[0] can be transformed
using the law of De Morgan (a ∧ b = a ∨ b):

A[0] = a[0]⊕ (a[1]⊕ 1) ∧ (a[2]⊕ 1) = a[0]⊕ 1⊕ (a[1] ∨ a[2]) .

So we have
A[0] = a[0]⊕ (a[1] ∨ a[2]) .

The equation for the bits of A[1] now becomes A[1] = a[1]⊕ (a[2] ∧ a[3]). This results in the
cancellation of two NOT operations and A[0] being represented by its complement. Simi-
larly, representing a[4] by its complement cancels two more NOT operations. We have

A[0] = a[0]⊕ (a[1] ∨ a[2]),
A[1] = a[1]⊕ (a[2] ∧ a[3]),
A[2] = a[2]⊕ (a[3] ∨ a[4]),
A[3] = a[3]⊕ (a[4] ∧ a[0]).

In the computation of the bits of A[4] the NOT operation cannot be avoided without intro-
ducing NOT operations in other places. We do however have two options:

A[4] = a[4]⊕ ((a[0]⊕ 1) ∧ a[1]), or
A[4] = a[4]⊕ (a[0] ∨ (a[1]⊕ 1)).

Hence one can choose between computing A[4] and A[4]. In each of the two cases a NOT
operation must be performed on either a[0] or on a[1]. These can be used to compute A[0]
rather than A[0] or A[1] rather than A[1], respectively, adding another degree of freedom
for the implementer. In the output some lanes are represented by their complement and the
implementer can choose from 4 output paĴerns. In short, representing lanes a[2] and a[4]

14 / 59

2. Implementation techniques Kђѐѐюј implementation overview

by their complement reduces the number of NOT operations from 5 to 1 and replaces 2 or 3
AND operations by OR operations. It is easy to see that complementing any pair of lanes a[i]
and a[(i + 2) mod 5] will result in the same reduction. Moreover, this is also the case when
complementing all lanes except a[i] and a[(i + 2) mod 5]. This results in 10 possible input
paĴerns in total.

Clearly, this can be applied to all 5 planes of the state, each with its own input and output
paĴerns. We apply a complementing paĴern (ormask) p at the input of χ and choose for each
plane an output paĴern resulting in P. This output mask P propagates through the linear
steps θ, ρ, π (and ι) as a symmetric difference paĴern, to result in yet another (symmetric)
mask p′ = π(ρ(θ(P))) at the input of χ of the next round. We have looked for couples of
masks (p, P) that are round-invariant, i.e., with p = π(ρ(θ(P))), and found one that comple-
ments the lanes in the following 6 (x, y) positions at the output of χ or input of θ:

P : {(1, 0), (2, 0), (3, 1), (2, 2), (2, 3), (0, 4)}.

A round-invariant mask P can be applied at the input of Kђѐѐюј- f . The benefit is that in
all rounds 80%of theNOToperations are cancelled. The output of Kђѐѐюј- f can be corrected
by applying the same mask P. The overhead of this method comes from applying the masks
at the input and output of Kђѐѐюј- f . This overhead can be reduced by redefining Kђѐѐюј- f
as operating on the masked state. In that case, P must be applied to the root state 0b and
during the squeezing phase some lanes (e.g., 4 when r = 16w) must be complemented prior
to being presented at the output.

The Optimized32 and Optimized64 implementations can be set to use lane comple-
menting by defining the UseBebigokimisa symbol in KeccakF-1600-opt*-settings.h [9].
KђѐѐюјTќќљѠ can generate code that make use of lane complementing for any lane size
[12].

2.3 Extending the state for smoother scheduling

A naive serialized implementation of the Kђѐѐюј- f round function would perform the dif-
ferent steps sequentially: one phase per step. In such a scheduling the full state is processed
four times per round, typically resulting in high load-and-store overhead. One may reduce
this number by combining multiple steps in a single phase. For example, the two bit trans-
positions ρ and π can be computed in a single phase. In this section we describe a technique
to reduce the number of phases to two.

The main idea is to adopt a redundant state representation that includes the column parities.
The main phase updates the state bits and can be serialized down to the level of rows. The
other phase updates the column parity bits and can be serialized down to the level of bits. At
the expense of some additional storage overhead, the two phases can be combined into one.
This allows efficient and compact serialized hardware architectures and soĞware scheduling.

Let us consider the computation of a row of the round output given the round input
in extended representation. The last step is ι that simply consists of possibly flipping a bit
of the row. Before that, there is χ that can be applied to the row. This is preceded by the
bit transpositions π and ρ that can be implemented by taking the bits from the appropriate
positions of the state. The step θ requires adding two parity bits to each of the five bits of
the row. If one extends the state with the θ-effect rather than the column parity, the step
θ requires the addition of a single bit of the θ-effect to each bit of the row. It follows that
the computation of a single row only requires as input 5 bits of the state and 5 bits of the
θ-effect. In hardware, in principle one can compute rows serially by a small circuit that
implements χ restricted to a row and the addition of 5 θ-effect bits. ρ and π are materialized

15 / 59

Kђѐѐюј implementation overview 2. Implementation techniques

by RAM addressing. In soĞware there is no point in computing single rows. However, one
may compute sets of rows in parallel by making use of the bitwise Boolean instructions and
cyclic shiĞs. The simplest such grouping is by taking all the rows in a plane. Here ρ consists
of five cyclic shiĞs and π requires addressing. One can also apply bit-interleaving and group
all rows in a plane with even or odd z coordinates.

The computation of the θ-effect from a state can done bit-by-bit. For a given column,
one can initialize its column parity to zero and accumulate the bits of a column to it one by
one. This can again be grouped: lane-by-lane or using bit-interleaving. This computation
can however also be integrated in a single phase together with the computation of the round
output, as will be explained in Section 2.4.1. AĞer χ has been applied to a row, one accu-
mulates each of the bits in the corresponding column parity. AĞer all rows of a slice have
been computed, the corresponding column parities will have their correct value. Now these
column parities must simply be combined into the θ-effect. Note that this scheduling implies
the storage of the θ-effect of the round input and storage for the θ-effect of the round output
that is being computed.

The five bits of the round input used in the computation of a row of the round output are
not used in the computation of any other row. So the registers containing these round input
bits may be overwriĴen by the computed round output bits. This allows reducing working
memory for storing intermediate computation results to the working state, the θ-effect of the
round input and possible the column parity effect being computed. This is interesting in
soĞware implementations on platforms with restricted RAM. It goes at the expense of more
complex addressing as the position of statebits depends on the round number.

2.4 Plane-per-plane processing

This section describes a general technique to schedule the order of operations for high effi-
ciency, both in soĞware and serialized hardware architectures. The main idea is to process
one plane at a time centered around χ, i.e., y = 0, 1, . . . , 4 from the point of view of the
coordinates at the output of the round.

Let us take the point of view of the evaluation of χ applied to the five lanes of a plane y,
denoted B[·, y]. We can track each lane B[x, y] at the input of χ to a lane at the beginning of
the round A[x′, y′], with (x′, y′)T = M−1(x, y)T and M−1 the inverse of the matrix used in π.
Between A[x′, y′] and B[x, y] are the application of θ and a cyclic shiĞ ρ.

Assuming the parity effect of θ is already computed, as the values D[·] in [10, Algo-
rithm 3], we have:

B[x, y] = ROT((A[x′, y′]⊕ D[x′]), r[x′, y′]), with
(

x′

y′

)
= M−1

(
x
y

)
,

for a fixed y. Then, the plane y at the output of the round is obtained as

E[x, y] = B[x, y]⊕ ((NOT B[x + 1, y])AND B[x + 2, y]),

without forgeĴing to XOR E[0, 0] with the round constant to implement ι. Note that, since
y is fixed, the variable B is a plane and can be indexed only by its x coordinate. To get the
parities of the columns before θ, denoted C[·], the simplest solution is to compute them as
a first phase in the round. All the steps are summarized in Algorithm 1. Note that all lane
addresses can be fixed by loop unrolling. The output variables E[·, ·] can be used as input
for the next round.

Most software implementations available actually use the plane-per-plane processing [9]. The
code generated withKђѐѐюјTќќљѠ’s KeccakFCodeGen::genCodePlanePerPlane() follows
this idea too [12]. The code generation can be combined with lane complementing if desired.

16 / 59

2. Implementation techniques Kђѐѐюј implementation overview

Algorithm 1 Plane-per-plane processing
for x = 0 to 4 do

C[x] = A[x, 0]⊕ A[x, 1]⊕ A[x, 2]⊕ A[x, 3]⊕ A[x, 4]
end for
for x = 0 to 4 do

D[x] = C[x− 1]⊕ ROT(C[x + 1], 1)
end for
for y = 0 to 4 do
for x = 0 to 4 do

B[x] = ROT((A[x′, y′]⊕ D[x′]), r[x′, y′]), with
(

x′

y′

)
= M−1

(
x
y

)
end for
for x = 0 to 4 do

E[x, y] = B[x]⊕ ((NOT B[x + 1])AND B[x + 2])
end for

end for
E[0, 0] = E[0, 0]⊕ RC[i]

2.4.1 Early parity

To compute the parities of the columns, an alternate option is to compute C[·] ahead during
a round for the next one: C[x] accumulates the values E[x, y] on the fly as they are computed.
We call this early parity and it is described in Algorithm 2. Of course, when using the early
parity, the parity C must still be computed before the first round and does not need to be
computed during the last round.

Algorithm 2 Plane-per-plane processing with early parity (ι not shown)
Assuming C[·] already computed
for x = 0 to 4 do

D[x] = C[x− 1]⊕ ROT(C[x + 1], 1)
end for
C = (0, 0, 0, 0, 0)
for y = 0 to 4 do
for x = 0 to 4 do

B[x] = ROT((A[x′, y′]⊕ D[x′]), r[x′, y′]), with
(

x′

y′

)
= M−1

(
x
y

)
end for
for x = 0 to 4 do

E[x, y] = B[x]⊕ ((NOT B[x + 1])AND B[x + 2])
C[x] = C[x]⊕ E[x, y]

end for
end for

KђѐѐюјTќќљѠ’s function KeccakFCodeGen::genCodePlanePerPlane() has a parameter
prepareTheta that tells whether to include the computation of C[·] ahead for early par-
ity.

17 / 59

Kђѐѐюј implementation overview 2. Implementation techniques

2.4.2 Combining with bit interleaving

Plane-per-plane processing can be combined with bit interleaving. We adapt Algorithm 1
by writing it in terms of operations on m-bit words. All the variables are now m-bit words,
instead of w-bit lanes, and we add an extra coordinate ζ when necessary, with ζ ∈ Zs and
s = w/m the interleaving factor. All the operations on the x, y (resp. ζ) coordinates are
considered modulo 5 (resp. modulo s).

The resulting algorithm is displayed in Algorithm 3. In the main loop (starting from the
10th line), the coordinates x, y and ζ are from the point of view of the output of the round.
The coordinates x′, y′ and ζ ′ express which input word has to be fetched.

Algorithm 3 Plane-per-plane processing with bit interleaving of factor s
for x = 0 to 4 and ζ = 0 to s− 1 do

C[x, ζ] = A[x, 0, ζ]⊕ A[x, 1, ζ]⊕ A[x, 2, ζ]⊕ A[x, 3, ζ]⊕ A[x, 4, ζ]
end for
for x = 0 to 4 do

D[x, 0] = C[x− 1, 0]⊕ ROT(C[x + 1, s− 1], 1)
for ζ = 1 to s− 1 do

D[x, ζ] = C[x− 1, ζ]⊕ C[x + 1, ζ − 1]
end for

end for
for y = 0 to 4 and ζ = 0 to s− 1 do
for x = 0 to 4 do
Let (x′, y′)T = M−1(x, y)T and ζ ′ = ζ − r[x′, y′] mod s
Let r = ⌊ r[x′,y′]

s ⌋+ 1 if ζ < r[x′, y′] mod s, or r = ⌊ r[x′,y′]
s ⌋ otherwise

B[x] = ROT((A[x′, y′, ζ ′]⊕ D[x′, ζ ′]), r)
end for
for x = 0 to 4 do

E[x, y, ζ] = B[x]⊕ ((NOT B[x + 1])AND B[x + 2])
end for

end for
E[0, 0, ζ] = E[0, 0, ζ]⊕ RCs[i, ζ] for ζ = 0 to s− 1

The code generated with KђѐѐюјTќќљѠ’s function KeccakFCode-
Gen::genCodePlanePerPlane() can be combined with bit interleaving [12].

2.5 Efficient in-place implementations

In this section, we adapt the addressing in the plane-per-plane processing to minimize the
memory needed to compute Kђѐѐюј- f .

In the previous section, the computation of the round function extracted its input from
variables denoted A and stored the output into variables E. These two sets of variables, each
of the size of b bits, must be distinct to avoid overwriting variables required for subsequent
computations; hence, 2b bits are needed to store both A and E. In this section, we propose a
way to do plane-per-plane processing using only the A set of variables, hereby reducing the
memory consumption by b bits. To do this, we allow A[x, y] to store lanes of coordinates not
necessarily (x, y)T.

When processing a plane y as in Algorithm 1, χ needs five lanes coming from the coordi-

18 / 59

2. Implementation techniques Kђѐѐюј implementation overview

nates M−1
(

x
y

)
=

(
x + 3y

x

)
for all x ∈ Z5 at the input of the round. This determines a line

with slope 1 going through (0, 2y) (input variety). The five lanes at the output of χ are per
construction on a line with slope 0 going through (0, y) (output variety). To avoid overwrit-
ing other variables, wemust store the five lanes of the output variety in the memory location
that held the input variety. We choose that the relationship between the lane coordinates and
the memory location is represented by a linear matrix N ∈ Z5 ×Z5. At the end of the first
round, the lane at (x, y)T is stored at location N(x, y)T. To satisfy the mapping of the output

variety onto the input variety, N must be of the form
(

1 a
1 b

)
with a + b = 2. We choose to

set a = 0 so as to leave the x coordinate unchanged during the mapping, hence

N =

(
1 0
1 2

)
.

At the beginning of the second round, the input variety appears rotated by N in memory
so the lane at (x, y)T is stored at location N2(x, y)T at the end of the second round. In general
at round i, the lanes with coordinates (x, y)T are stored at location Ni(x, y)T.

The input of χ with coordinates (x, y)T requires the lane with coordinates M−1(x, y)T be-
foreπ, which is located at coordinates Ni M−1(x, y)T inmemory. Notice that Ni M−1(x, y)T =
(x + 3y, . . .), so there is a shiĞ in the x coordinate inherent to the lane-per-lane processing.

This can be explicitly compensated for bymultiplying all coordinates by MN =

(
1 2
0 1

)
and

integrating this shiĞ before or aĞer χ, as χ is translation-invariant. This leads to a simpler
expression: The input of χ with coordinates (x + 2y, y)T requires the lane with coordinates
N(x, y)T before π, which is located at coordinates Ni+1(x, y)T in memory. The resulting al-
gorithm can be found in Algorithm 4.

Note the following properties of N:

• The matrix N has order 4, so aĞer every 4 rounds the variable A will contain the state
without transposition. Unrolling 4 rounds implies that all the coordinates can be con-
stants, and the memory or register indexing can be hardcoded.

• Expressions like N j(x, y)T are of the form (x, fi(x, y))T. So in an implementation that
does not unroll the rounds, only the y coordinate changes compared to Algorithms 1
and 2.

Finally, note that Algorithm 4 can also be combined with early parity, lane complement-
ing and bit interleaving techniques, the laĴer being detailed below.

The Inplace and Inplace32BI implementations explicitly use the techinque presented in
this section on Kђѐѐюј- f [1600], one using 64-bit rotations and the other one using bit in-
terleaving for 32-bit rotations [9]. KђѐѐюјTќќљѠ’s KeccakFCodeGen::genCodeInPlace()
can generate code for 4 unrolled rounds using this in-place technique, with factor-2 inter-
leaving or without it [12].

2.5.1 Combining with bit interleaving

Similarly to Section 2.4.2, we adapt Algorithm 4 by writing it in terms of operations on m-bit
words. All the variables are now m-bit words, instead of w-bit lanes, and we add an extra
coordinate ζ when necessary, with ζ ∈ Zs and s = w/m the interleaving factor. All the
operations on the x, y (resp. ζ) coordinates are considered modulo 5 (resp. modulo s).

19 / 59

Kђѐѐюј implementation overview 2. Implementation techniques

Algorithm 4 In-place processing of round i
for x = 0 to 4 do

C[x] = A[Ni(x, 0)T]⊕ A[Ni(x, 1)T]⊕ A[Ni(x, 2)T]⊕ A[Ni(x, 3)T]⊕ A[Ni(x, 4)T]
end for
for x = 0 to 4 do

D[x] = C[x− 1]⊕ ROT(C[x + 1], 1)
end for
for y = 0 to 4 do
for x = 0 to 4 do

B[x + 2y] = ROT((A[Ni+1(x, y)T]⊕ D[x]), r[N(x, y)T])
end for
for x = 0 to 4 do

A[Ni+1(x, y)T] = B[x]⊕ ((NOT B[x + 1])AND B[x + 2])
end for

end for
A[0, 0] = A[0, 0]⊕ RC[i]

While the memory location of a given lane vary from round to round according to the
Ni(x, y)T rule, the ζ coordinate of words varies as well. This is because, five words are
fetched and processed from a given set of five memory locations, and the resulting five
words must be stored into the same five locations, for the implementation to be in-place.
Let us first illustrate this with an example using interleaving with factor s = 4 (e.g., to com-
pute Kђѐѐюј- f [1600] with 16-bit operations) and using the notations of Algorithm 3. At the
beginning of the first round i = 0, words are stored in memory locations with the identical
coordinates. Assume that we want to process the quarter-plane y = 2 and ζ = 0. At some
point, we need to compute the word B[0], i.e., word (x, y, ζ) = (0, 2, 0) at the input of χ. To
do so, we need the word A[1, 0, 3] since (x′, y′)T = (1, 0)T = M−1(x, y)T and r[0, 0] = 1 so
ζ ′ = ζ − 1 = 3 (mod s). At the beginning of the round, word (1, 0, 3) is stored in memory
at (1, 0, 3). We will need to reuse the memory locations that we just processed. So, to respect
the Ni(x, y)T rule, all words belonging to lane (1, y) = (1, 2) have to be stored at memory
locations (1, 0, ·) since N(1, 2)T = (1, 0)T. In particular, word (1, y, ζ) = (1, 2, 0) needs to
be stored at memory location (1, 0, 3) since it is the only memory location free at this point
within (1, 0, ·). So the third coordinate of the word (0 in this example) can become different
from the third coordinate of the memory location to store it (3 in this example). For the other
words of the lane, there will be a constant shiĞ between the third coordinates.

In general, the relationship between the third coordinate ofwords and that of thememory
location depends on the rotation constants. Wemodel this relationship as follows. At the be-
ginning of round i, word ζ of lane (x, y)T is stored at memory location (x′, y′, ζ +O(i, x′, y′))
with (x′, y′)T = Ni(x, y)T. HereO(i, x, y) is viewed as a property of thememory cells (x, y, ·):
it tells by how many positions the words are shiĞed.

Using the notations of Algorithm 3, word (x′, y′, ζ ′) is read in order to evaluate out-
put word (x, y, ζ). Word (x′, y′, ζ ′) is located in memory at (x′′, y′′, ζ ′ + O(i, x′′, y′′)), with
(x′′, y′′)T = Ni(x′, y′)T, which can now be reused. Hence some output word within the
part of the plane being processed (·, y, ζ) is stored at the same memory position (x′′, y′′, ζ ′ +
O(i, x′′, y′′)) at the end of round i. Looking only at the third coordinate, we use memory
location ζ ′ + O(i, x′′, y′′) = ζ − r[x′, y′] + O(i, x′′, y′′) (mod s) to store word ζ at the be-
ginning of round i + 1. Since r[x′, y′] = r[N−i(x′′, y′′)T], we identify O(i + 1, x′′, y′′) =

20 / 59

2. Implementation techniques Kђѐѐюј implementation overview

O(i, x′′, y′′)− r[N−i(x′′, y′′)T] and we obtain:

O(i, x, y) = −
i−1

∑
j=0

r[N−j(x, y)T] (mod s).

The resulting algorithm is displayed in Algorithm 5.Note thatO(i, 0, 0) = 0 for all rounds
i, so the last line (evaluation of ι) can be simplified.

Algorithm 5 In-place processing of round i with bit interleaving of factor s
for x = 0 to 4 and ζ = 0 to s− 1 do
Let ζy = ζ + O(i, Ni(x, y)T)
C[x, ζ] = A[Ni(x, 0)T, ζ0] ⊕ A[Ni(x, 1)T, ζ1] ⊕ A[Ni(x, 2)T, ζ2] ⊕ A[Ni(x, 3)T, ζ3] ⊕
A[Ni(x, 4)T, ζ4]

end for
for x = 0 to 4 do

D[x, 0] = C[x− 1, 0]⊕ ROT(C[x + 1, s− 1], 1)
for ζ = 1 to s− 1 do

D[x, ζ] = C[x− 1, ζ]⊕ C[x + 1, ζ − 1]
end for

end for
for y = 0 to 4 and ζ = 0 to s− 1 do
for x = 0 to 4 do
Let (x′′, y′′)T = Ni+1(x, y)T and ζ ′ = ζ − r[N(x, y)T] mod s
Let r = ⌊ r[N(x,y)T]

s ⌋+ 1 if ζ < r[N(x, y)T] mod s, or r = ⌊ r[N(x,y)T]
s ⌋ otherwise

B[x + 2y] = ROT((A[x′′, y′′, ζ ′ + O(i, x′′, y′′)]⊕ D[x, ζ ′]), r)
end for
for x = 0 to 4 do
Let (x′′, y′′)T = Ni+1(x, y)T

A[x′′, y′′, ζ + O(i + 1, x′′, y′′)] = B[x]⊕ ((NOT B[x + 1])AND B[x + 2])
end for

end for
A[0, 0, ζ + O(i + 1, 0, 0)] = A[0, 0, ζ + O(i + 1, 0, 0)]⊕ RCs[i, ζ] for ζ = 0 to s− 1

2.5.1.1 Special case: interleaving factor 2

We now look at the specific case of an in-place implementation using an interleaving of
factor s = 2, e.g., to implement Kђѐѐюј- f [1600] using 32-bit operations or to implement
Kђѐѐюј- f [400] using 8-bit operations. AĞer 4 rounds, one would expect all the lanes to come
back to their initial positions but not necessarily the word offsets within the lanes, requiring
another 4 rounds for O(8, x, y) to be zero (modulo 2). However, the nice thing about this
special case is that O(4, x, y) = 0 (mod 2) for all coordinates x, y. This implies that aĞer 4
rounds, all the words within the lanes are also back to their initial positions.

To verify that O(4, x, y) = −∑3
j=0 r[N−j(x, y)T] = 0 (mod 2) for all x, y coordinates, we

start with two properties of N:

• The matrix N and its powers leave the set x + y = 0 unchanged, i.e., the set x + y = 0
is an eigenspace with eigenvalue 1.

21 / 59

Kђѐѐюј implementation overview 2. Implementation techniques

• Except for the points in the set x + y = 0, the points Ni(x, y)T stay in column x, take
all the positions such that y ̸= −x and come back to their initial position aĞer a cycle
of length 4.

For coordinates satisfying x + y = 0, r[N−j(x, y)T] is a constant so clearly 2 dividesO(4, x, y).
For the other coordinates, it suffices to check that the sum of the round constants over the 4
coordinates y ̸= −x in each column is zero modulo 2.

The Inplace32BI implementation exploits this by unrolling 4 rounds [9].

2.5.1.2 Special case: interleaving factor 4

We now look at the specific case of an in-place implementation using an interleaving of
factor s = 4, e.g., to implement Kђѐѐюј- f [1600] using 16-bit operations or to implement
Kђѐѐюј- f [800] using 8-bit operations. Extending the same reasoning from the previous case
s = 2, we see that O(4, x, y) ∈ {0, 2} (mod 4) for all coordinates x, y. This implies that aĞer
8 rounds, we have O(8, x, y) = 2O(4, x, y) = 0 (mod 4) and all the words within the lanes
are back to their initial positions.

If unrolling 8 rounds is a problem, we can unroll 4 rounds and compute O(4, x, y) to see
how words are stored. Fortunately, O(4, x, y) = 0 (mod 4) for all x, y coordinates except
(0, 1), (0, 2), (0, 3), (0, 4), for which O(4, x, y) = 2 (mod 4). So aĞer 4 rounds it suffices to
interchange A[x, y, ζ] with A[x, y, ζ + 2] for the x, y coordinates in the set above.

2.6 Processing slices

In this section, wediscuss implementation techniques that are essentially hardware-oriented.
They consist in processing together a slice or a group of slices, either with consecutive z
coordinates or with constant coordinate z modulo some number.

2.6.1 Processing consecutive slices

The idea of processing consecutive slices in a hardware circuit comes from Jungk and Apfel-
beck [20]. While the state of Kђѐѐюј- f [25w] can be seen as an array of 25 lanes of w bits, the
transposed view is to see it as an array of w slices of 25 bits each. The function of ρ is to
disperse bits across different slices, but all the other operations work in a slice-oriented way.
More precisely, π and χ work in each slice independently, and for θ the output slice z de-
pends on the input slices z− 1 and z. Hence, a hardware implementation can process groups
of n slices with consecutive z coordinates, where n divides w. The number n of consecutive
slices can serve as a parameter for speed-area trade-offs.

The round function needs to be rescheduled to perform the operations as π ◦ ρ ◦ θ ◦ ι ◦ χ.
Note that ρ and π can be interchanged, so that π can be groupedwith the other slice-oriented
operations. To start the permutation, one has to compute π ◦ ρ ◦ θ and to end it ι ◦ χ.

Jungk and Apfelbeck implemented Kђѐѐюј- f [1600] using n = 8 consecutive slices, with
extra registers to manage the fact that θ makes the last slice of a group interact with the
first slice of the next group. Inter-slice dispersion ρ is implemented in part by an appropriate
addressing of RAM and in part by extra registers. This resulted in a compact implementation
[20], see also Table 4.5.

22 / 59

2. Implementation techniques Kђѐѐюј implementation overview

2.6.2 Processing interleaved slices

An alternative to the idea of consecutive slices is to group slices in an interleaved way. For a
given interleaving factor s, the slices are grouped with constant coordinate z modulo s.

This technique has similar properties as for processing consecutive slices. For instance,
we expect it allows similar speed-area trade-offs in hardware implementations, as the num-
ber of slices to be grouped can be chosen. In contrast, however, ρ can be partly done within
a group of slices. This removes the need for the extra registers dedicated to ρ, but some extra
memory could be needed to store the parity (as in Section 2.3) so as to implement θ without
interdependencies between groups of slices.

At this time, we are not aware of an existing implementation making use of this technique.

23 / 59

Kђѐѐюј implementation overview 2. Implementation techniques

24 / 59

Chapter 3

SoĞware

In this chapter, we give an overview of soĞware implementations. Please note that we do
not provide extensive benchmark results of Kђѐѐюј on various platforms. Instead, we refer
to eBASH and XBX for detailed and up-to-date benchmarking data on a wide range of plat-
forms [2, 33]. In addition, a summary of the data coming from eBASH and XBX can be found
on our web page [7].

3.1 PC and high-end platforms

3.1.1 Using 64-bit instructions

The platforms supporting 64-bit instructions are in general well-suited for Kђѐѐюј- f [1600],
as a lane can be mapped onto a CPU word. The x86-64 instruction set present in the CPU
of most recent PCs is a widely-used example. This instruction set does not have a combined
AND+NOT instruction, so lane complementing can be used to reduce the number of NOT
instructions. At the time of writing, the permutation Kђѐѐюј- f [1600] plus XORing 1024 bits
takes slightly more than 1600 cycles on a typical x86-64-based machine, hence enabling to
absorb long messages with Kђѐѐюј[] at about 12.6 cycles/byte. Kђѐѐюј[] performs very well
on IA64-based machines too, at around 6-7 cycles/byte [7, 2].

In [9], we provide an implementation suitable for 64-bit CPUs called Optimized64. The code
uses only plain C instructions, without assembly nor SIMD instructions. If needed, we have
applied lane complementing to reduce the number of NOTs. The operations in the round
function have been expanded in macros generated by KђѐѐюјTќќљѠ [12]. We have tried to
interleave lines that apply on different variables to enable pipelining, while grouping sets
of lines that use a common precomputed value to avoid reloading the registers too often.
The order of operations is centered on the evaluation of χ on each plane, preceded by the
appropriate XORs for θ and rotations for ρ, and accumulating the parity of sheets for θ in the
next round.
In KeccakF-1600-opt64-settings.h, the number of rounds unrolled can be set to any num-
ber dividing 24, and the use of lane complementing can be turned on or off.

• For x86-64, the fastest option is to unroll 24 rounds (#define Unrolling 24) and to
use lane complementing (#define UseBebigokimisa).

• For IA64, unrolling 6 rounds and not using lane complementing give the fastest results.

25 / 59

Kђѐѐюј implementation overview 3. SoĞware

3.1.2 Using SIMD instructions

Some platforms do not have plain 64-bit instructions but have single-instruction multiple-
data (SIMD) units capable of processing 64-bit or 128-bit data units.

In the family of Intel, AMD and compatible CPUs, a majority supports SIMD instruction
sets known as MMX, SSE, AVX, XOP and their successors. These include bitwise operations
on 64-bit and 128-bit registers. Thanks to the symmetry of the operations in Kђѐѐюј- f , the
performance of Kђѐѐюј can benefit from these instruction sets. For instance, the pandn in-
struction performs the ANDNOT operation bitwise on 128-bit registers (or one register and
one memory location), which can be used to implement χ. Such an instruction replaces four
64-bit instructions or eight 32-bit instructions. Similarly, the pxor instruction computes the
XOR of two 128-bit registers (or one register and one memory location), replacing two 64-bit
XORs or four 32-bit XORs.

While instructions on 128-bit registers work well for θ, π, χ and ι, the implementation of
the cyclic shiĞs in ρ depends significantly on the instructions available. In SSE, no rotation
instructions are present but only (leĞ and right) shiĞs by the same amount. Consequently,
the rotations in ρ cannot fully benefit from the 128-bit registers, whereas the rotations in θ are
all of the same amount and can be combined efficiently. In the XOP instruction set, however,
the instruction vprotq allows one to do cyclic shiĞs of two 64-bit words in parallel. Further-
more, the rotations can be of different amounts for each of the twowords. Using XOP instead
of plain x86-64 instructions on some recent AMD processors increases the throughput by a
factor 1.75.

If a modern 64-bit CPU such as an Intel Core 2 Duo or an AMD Athlon 64 is restricted
to 32-bit instructions (e.g., if the installed operating system uses only a legacy 32-bit mode),
using the 128-bit registers of SSE yields faster throughput than using plain 32-bit instructions
on such platforms. In such a case, the evaluation of Kђѐѐюј- f [1600] and XORing 1024 bits
takes about 2500 cycles, hence enabling to absorb long messages with Kђѐѐюј[] at about 20
cycles/byte.

Some older PCs have 32-bit CPUs and a MMX unit with 64-bit SIMD registers. In such
a case, it is also interesting to use SIMD instructions. E.g., on an Intel Pentium 3, the eval-
uation of Kђѐѐюј- f [1600] and XORing 1024 bits takes about 5200 cycles, hence enabling to
absorb long messages with Kђѐѐюј[] at about 41 cycles/byte. This represents a 40% speedup
compared to an implementation using only 32-bit instructions.

Finally, some ARM processors propose the NEON instruction set, which provides 64-bit
registers and 64-bit operations. Furthermore, some of these operations can be combined so
as to execute two of them in one clock cycle in a SIMD fashion. With our current implemen-
tations, using NEON gives a 60% speedup compared to an implementation using only 32-bit
instructions.

In [9], we provide implementations for 64-bit MMX and 128-bit SSE instructions. This can
be set in KeccakF-1600-opt64-settings.h, by defining either UseMMX or UseSSE. Files
Keccak*-crypto_hash-inplace-armgcc-ARMv7A-NEON.s contain assembly implementa-
tions using NEON.

3.1.3 SIMD instructions and tree hashing

Parallel evaluations of two instances of Kђѐѐюј can also benefit from SIMD instructions, for
example in the context of tree hashing. In particular, a tree hashing mode as defined in [4]
using Kђѐѐюј[] and parameters (G = LI, H = 1, D = 2, B = 64, C = c = 576) can directly
take advantage of two independent sponge functions running in parallel, each taking 64 bits
of input alternatively. The final node then combines their outputs.

26 / 59

3. SoĞware Kђѐѐюј implementation overview

We have implemented the Kђѐѐюј- f [1600] permutation with SSE2 or XOP instructions
using only 64 bits of the 128-bit registers. By definition of these instructions, the same op-
erations are applied to the other 64 bits of the same registers. It is thus possible to evaluate
two independent instances of Kђѐѐюј- f [1600] in parallel on a single core of the CPU.

In this instance of the tree hashing mode, the message bits can be directly input into the
128-bit registers without any data shuffling. Using leaf interleaving and a block size B of 64
bits, 64 bits of message are used alternatively by the first sponge function then by the second
sponge function. This matches how the data are organized in the SIMD registers, where 64
bits are used to compute one instance of Kђѐѐюј- f [1600] and the other 64 bits to compute the
second instance.

On a PCwith an Intel Sandy Bridge architecture, we havemeasured the speed of the dou-
ble evaluation of Kђѐѐюј- f [1600] and the XOR of two blocks of 1024 bits. This takes about
1800 cycles, hence enabling to absorb long messages at about 7 cycles/byte. Furthermore,
one may consider the case r = 1088 and C = c = 512, for which the claimed security level
is 2256. While losing the power of two for the rate, the final node needs to absorb only one
block (DC < r) and the overhead remains reasonable: one extra evaluation of Kђѐѐюј- f per
message. This benefits also to long messages, for which the number of cycles per byte is
further reduced to about 6.7 cycles/byte. On recent AMD processors with the XOP instruc-
tion set, the throughput is even higher thanks to the SIMD rotation instruction (less than 6
cycles/byte with r = 1088).

3.1.4 Batch or tree hashing on a graphics processing unit

Using a graphics processing unit (GPU) allows for a high number of instances of Kђѐѐюј to
be computed in parallel. This can be useful in the case of the batch evaluation of several hash
functions or of several key streams, or in the case of tree hashing. We are aware of at least
two implementations of Kђѐѐюј on a graphics processing unit [19, 30].

3.2 Small 32-bit platforms

In this section, we consider the implementation of Kђѐѐюј on a 32-bit platform without a
SIMD unit.

A first question to ask ourselves—at least if this choice is possible due to interoper-
ability constraints—is to consider using either Kђѐѐюј- f [800] or Kђѐѐюј- f [1600]. On the
one hand, for a given security level—hence a given capacity c—a sponge function using
Kђѐѐюј- f [1600] allows processing 800 more input bits per call to the permutation than one
using Kђѐѐюј- f [800]. On the other hand, the memory footprint of Kђѐѐюј- f [800] is smaller
as its the state uses only 25words of 32 bits, while this number raises to 50 forKђѐѐюј- f [1600].
A lower number of words usually means a lower number of load/store operations from/to
memory.

If one goes for Kђѐѐюј- f [1600], the best is to make use of the bit interleaving technique
(see Section 2.1). This way, all the operations are done on 32-bit words, including the rota-
tions. If one goes for Kђѐѐюј- f [800], each lane is simply mapped to a CPU word.

27 / 59

Kђѐѐюј implementation overview 3. SoĞware

For 32-bit platforms in general, good starting points are the following.

• The target Simple32BI contains a simple yet optimized implementation of
Kђѐѐюј- f [1600] in C using bit interleaving (see file Keccak-simple32BI.c).

• Alternatively, the target Inplace32BI is almost as simple as Simple32BI, with the
added benefit of using less RAM.

• The target Simple can be used to instantiate a simple yet optimized implementation
of Kђѐѐюј- f [800] in C, mapping a lane to a CPU word (see file Keccak-simple.c and
set cKeccakB to 800 in Keccak-simple-settings.h).

3.2.1 Implementation on a ARM Cortex-M0 and -M3

The ARM Cortex-M3 is a 32-bit RISC microcontroller core with 16 registers. Its instruction
set contains a combined AND+NOT instruction called bic, so that lane complementing does
not give a speed advantage. The 32-bit rotations are natively supported and such rotations
can be combined with other operations thanks to its barrel shiĞer. The ARM Cortex-M0 is
similar, with a smaller footprint and a restricted instruction set.

With our best implementations, Kђѐѐюј[] takes about 144 cycles/byte (for -M0) or 95 cy-
cles/byte (for -M3) for long messages and 272 bytes of RAM on the stack, according to our
measurements.

In [9], we provide implementations in assembly of Kђѐѐюј- f [1600] for ARM Cortex-M0 and
-M3; see the files Keccak-inplace32BI-armgcc-ARMv6M.s and -v7M.s. It uses bit interleav-
ing and takes advantage of the barrel shifter to combine some XORs and rotations in one
instruction.

3.3 Small 8-bit platforms

In this section, we consider the implementation of Kђѐѐюј on a small 8-bit platform. As for
small 32-bit platforms, the first question to ask ourselves is which instance of Kђѐѐюј- f to
implement. Generally speaking, larger instances allow having larger rates and processing
more input bits for a given capacity c. However, the required memory also increases.

The bit interleaving technique, described in Section 2.1, could be used to represent the
64-bit, 32-bit and 16-bit lanes of Kђѐѐюј- f [1600], Kђѐѐюј- f [800] and Kђѐѐюј- f [400], respec-
tively, with bytes. Byte-level rotations, however, are not oĞen present on 8-bit platforms.
Rotations that propagate a bit through the carry are usually natively supported and can be
used to perform rotations over lanes of any size, by chaining such rotations through all the
bytes of a lane. So, in practice, we did not find bit interleaving to be advantageous in this
case, although it may become so on some specific platforms.

If a small capacity of c = 160 bits or so is enough for a given application, one can use
Kђѐѐюј- f [200], which uses only 8-bit operations and can be made very compact, as the state
only uses 25 bytes.

For small 8-bit platforms in general, the target Compact8 in [9] is a good starting point to
implement Kђѐѐюј- f [1600] on an 8-bit processor. Also, the target Simple can be used to
instantiate a simple yet optimized implementation of Kђѐѐюј- f [200], mapping a lane to a
byte (see file Keccak-simple.c and set cKeccakB to 200 in Keccak-simple-settings.h),
although this implementation was not optimized for size.

28 / 59

3. SoĞware Kђѐѐюј implementation overview

3.3.1 Implementation on a Atmel AVR processor

The AVR platform uses an 8-bit RISC processor with 32 single-byte registers. With our best
implementation on this processor, Kђѐѐюј[] takes about 1110 cycles/byte for long messages
and 281 bytes of RAM on the stack, according to our measurements.

In [9], we provide an implementation in assembly of Kђѐѐюј- f [1600] for Atmel AVR; see the
files Keccak-avr8*.

29 / 59

Kђѐѐюј implementation overview 3. SoĞware

30 / 59

Chapter 4

Hardware

In this chapter we report on our hardware implementations of Kђѐѐюј without protection
against side-channel aĴacks. For an overview and links to third-party hardware implemen-
tations of Kђѐѐюј we refer to [6].

4.1 Introduction

Thanks to the symmetry and simplicity of its round function, Kђѐѐюј allows trading off
area for speed and vice versa. Different architectures reflect different trade-offs. We have
investigated and implemented three architectures to reflect the two ends of the spectrum (a
high-speed core and a low-area coprocessor) plus a mid-range core.

We have coded our architectures in VHDL for implementation in ASIC and FPGA [5]. For more
details on the VHDL code, refer to the readme.txt file in the VHDL directory.

In these efforts we focused on two instances of Kђѐѐюј:

Kђѐѐюј[r = 1024, c = 576] : the instance of Kђѐѐюј with default parameter values. It is built
on top of Kђѐѐюј- f [1600], the largest instance of the Kђѐѐюј- f family.

Kђѐѐюј[r = 40, c = 160] : the smallest instance of Kђѐѐюј with a capacity providing a secu-
rity level sufficient for many applications. It makes use of Kђѐѐюј- f [200].

It should be noted that during the design of Kђѐѐюј particular effort has been put to facil-
itate the hardware implementation. The round function is based only on simple Boolean
expressions and there is no need for adders or S-boxes with complex logic (typically used
in many cryptographic primitives). Avoiding these complex sub-blocks allow having a very
short critical path for reaching very high frequencies. Another beneficial aspect of Kђѐѐюј
is that, unless intentionally forced, a general architecture implementing Kђѐѐюј- f and the
sponge construction can easily support all variants (rates, capacities) and use cases (MAC,
MGF, KDF, PRG) for a given lane size.

4.2 High-speed core

The core presented in this section operates in a stand-alone fashion. The input block is trans-
ferred to the core, and the core does not use other resources of the system for performing the
computation. The CPU can program a direct memory access (DMA) for transferring chunks of
the message to be hashed, and the CPU can be assigned to a different task while the core is
computing the hash.

31 / 59

Kђѐѐюј implementation overview 4. Hardware

Figure 4.1: The high-speed core

The architecture of the high-speed core design is depicted in Figure 4.1. It is based on the
plain instantiation of the combinational logic for computing one Kђѐѐюј- f round, and use it
iteratively.

The core is composed of three main components: the round function, the state register
and the input/output buffer. The use of the input/output buffer allows decoupling the core
from a typical bus used in a system-on-chip (SoC).

In the absorbing phase, the I/O buffer allows the simultaneous transfer of the input
through the bus and the computation of Kђѐѐюј- f for the previous input block. Similarly, in
the squeezing phase it allows the simultaneous transfer of the output through the bus and
the computation of Kђѐѐюј- f for the next output block.

These buses typically come in widths of 8, 16, 32, 64 or 128 bits. We have decided to
fix its width to the lane size w of the underlying Kђѐѐюј- f permutation. This limits the
throughput of the sponge engine to w per cycle. This imposes only a restriction if r/w (i.e.,
the rate expressed in number of lanes) is larger than the number of rounds of the underlying
Kђѐѐюј- f .

In a first phase the high-speed core has been coded in VHDL. Test benches for Kђѐѐюј- f
and the hash function are provided together with C code allowing the generation of test
vectors for the test benches. We were able to introduce the lane size as a parameter, allowing
us to generate VHDL for all the lane sizes supported by Kђѐѐюј.

These first VHDL implementations have been tested on different FPGAs by J. Strömberg-
son [31], highlighting some possible improvements and problems with the tools available
from FPGA vendors. We have improved the VHDL code for solving the problems, and this
has given beĴer results in ASIC as well.

The core has been tested using ModelSim tools. In order to evaluate the silicon area and
the clock frequency, the core has been synthesized using Synopsys Design Compiler and a

32 / 59

4. Hardware Kђѐѐюј implementation overview

Number of round instances Size Critical Path Frequency Throughput
n = 1 48 kgates 1.9 ns 526 MHz 22.44 Gbit/s
n = 2 67 kgates 3.0 ns 333 MHz 28.44 Gbit/s
n = 3 86 kgates 4.1 ns 244 MHZ 31.22 Gbit/s
n = 4 105 kgates 5.2 ns 192 MHz 32.82 Gbit/s
n = 6 143 kgates 6.3 ns 135 MHZ 34.59 Gbit/s

Table 4.1: Performance estimation of variants of the high speed core of
Kђѐѐюј[r = 1024, c = 576].

130 nm general purpose ST technology library, worst case 105◦C.

4.3 Variants of the high-speed core

The high-speed core can be modified to optimize for different aspects. In many systems the
clock frequency is fixed for the entire chip. So even if the hash core can reach a high frequency
it has to be clocked at a lower frequency. In such a scenario Kђѐѐюј allows instantiating two,
three, four or even six rounds in combinatorial logic and compute them in one clock cycle.

An alternative for saving area is to XOR the lanes composing the input blocks directly
into the state register and to extract the lanes composing the output blocks directly from it.

4.3.1 Kђѐѐюј[r = 1024, c = 576]

In this instantiation the width of the bus is 64 bits. The bitrate of 1024 bits and the number
of rounds of Kђѐѐюј- f [1600] being 24 implies a maximum rate of 43 bits per cycle.

The critical path of the core is 1.9 nanoseconds, of which 1.1 nanoseconds in the combi-
natorial logic of the round function. This results in a maximum clock frequency of 526MHz
and throughput of 22.4 Gbit/s. The area needed for having the core running at this frequency
is 48 kgate, composed of 19 kgate for the round function, 9 kgate for the I/O buffer and 21
kgate for the state register and control logic.

An alternative without separate I/O buffer allows saving about 8 kgate and decreases the
throughput to 12.8 Gbit/s at 500MHz.

Thanks to the low critical path in the combinational logic, it is possible to instantiate two
or more rounds per clock cycle. For instance, implementing two rounds gives a critical path
of 3 nanoseconds, allowing to run the core at 333MHz reaching a throughput of 28Gbit/s.
Such a core will consume 1024 bits every 12 clock cycle, thus the bus width must grow too to
keep upwith the throughput per cycle. Note that contrary tomany cryptographic algorithm,
in Kђѐѐюј the processing does not impose the boĴleneck in term of hardware implementa-
tion. Table 4.1 summarizes the throughputs for different variants.

4.3.2 Kђѐѐюј[r = 40, c = 160]

In this instantiation the width of the bus is 8 bits. The bitrate of 40 bits and the number of
rounds of Kђѐѐюј- f [200] being 18 implies a maximum rate of 2.2 bits per cycle.

The critical path of the core is 1.8 nanoseconds, of which 1.1 nanoseconds in the combi-
natorial logic of the round function. This results in a maximum clock frequency of 555MHz
and throughput of 1.23 Gbit/s. The area needed for having the core running at this frequency

33 / 59

Kђѐѐюј implementation overview 4. Hardware

is 6.5 kgate, composed of 3 kgate for the round function, 3.1 kgate for the state register and
control logic and less than 400 gates for the I/O buffer.

An alternative without separate I/O buffer allows saving about 400 gate and decreases
the throughput to 0.96 Gbit/s at 555MHz.

4.4 Mid-range core

Our mid-range core takes inspiration from the work of Jungk and Apfelbeck in [20]. It cuts
Kђѐѐюј’s state in typically 2 or 4 pieces, so naturally fiĴing between the fast core (1 piece)
and Jungk and Apfelbeck’s compact implementation (8 pieces). As a result, we get a circuit
not as fast as the fast core but more compact.

4.4.1 Description

One of the known techniques for trading silicon area at the cost of performances is the so
called folding. At first sight it might be not trivial to find a way for folding the Kђѐѐюј
round.

An interesting solution has been proposed by Jungk and Apfelbeck in [20]. They reor-
ganize the round in such a way that the two computational parts, χ and θ are close one to
the other, and not separated by registers or memory. Since these two transformations are
slice oriented, it is possible to build a computational unit that compute the sequence of χ, ι
and θ (called a central round) on a subset of the slices that compose the state. As the order of
the transformations within the round is changed, it is necessary to have an initial round and
a final round. The initial round is composed only by θ while the final round is like a central
round but missing θ. The amount of slices to be processed in one shot can be decided at
design time, it is convenient that the amount of slices is a divisor of the lane width, thus a
power of 2 for Kђѐѐюј.

Jungk and Apfelbeck in [20] adopted a RAM for storing the state and the computational
part processes 8 slices per iteration. The choice of processing 8 slices has beenmade for facil-
itating the routing of the data in the FPGA. In contrast, our mid-range core is ASIC oriented,
and we wanted to investigate how the performance scales as a function of the number of
slices and of the clock frequency.

The state is divided in Nb blocks, each consisting of a set of adjacent slices. The imple-
mentation is parametrized by Nb, and hence determines the amount of folding. The different
parts of the core are depicted in Figures 4.2, 4.3, 4.4 and 4.5. To make the description of the
core easier to follow, we take the practical example of Nb = 4, so with the state divided in
four blocks of 16 consecutive slices (400 bits) each in the case of Kђѐѐюј- f [1600].

The core is logically divided in two parts: the computational parts and the register block.
The laĴer is not a plain 1600 bit register, as there is some logic for routing the data in the
different phases of the computation. When the absorption of the input is executed, and
supposing an input interface of 64 bits, the 64 bit word is accumulated in the lane that spans
the four blocks. Based on the desired rate, the absorption will take as many clock cycles as
the number of words composing the rate.

Once the absorption is done, the state is ready for being processed by the rounds:

• The initial round is composed only by the θ transformation. For computing the θ trans-
formation on one block it is necessary to have access also to the slice of the adjacent
block. Thus while computing θ on the block containing the slices form z to z + 15, it is
necessary to have the parity of slice z− 1. In the case of the first block it is necessary
to have access to the 25 bits composing the slice z− 1 and use them for computing the

34 / 59

4. Hardware Kђѐѐюј implementation overview

Nb
MHz 2 4 8 16 32
333 25.5 21.1 19 17.8 17.3
500 28.3 22.3 19.6 18.5 17.6
625 35.1 26.5 22 19.8 18.2

Table 4.2: Gate count (KGE) for Kђѐѐюј[r = 1024, c = 576] as a function of the clock fre-
quency and the number of blocks Nb

θ-effect. For the other blocks a 5 bit register (in the θ parity block) stores the parity of
the slice, and use it for the computation of θ. In the central round the computation of
θ is done aĞer χ and ι, while in the initial round it is necessary to bypass χ and ι (see
multiplexer MUX1 in Figure 4.2).

• In the central rounds, the first step is the computation of ρ π, which is done in one
clock cycle and is just a pure wiring. All the 1600 bits of the state are read and wriĴen
in the correct position. Now block by block the sequence of χ ι θ is processed. For the
computation of θ the same care taken in the initial round is applied, on the first block
an additional slice is read from the register block for computing the θ parity, while for
the other blocks the needed θ parity is stored in a special register since computed in
the previous block.

• For the final round it is necessary to skip θ (see multiplexer MUX2 in Figure 4.2).

The block register is organized in a kind of shiĞ register fashion, as depicted in Figure 4.3.
We can see four different phases in the block register behavior. Two of them are related to the
computation of the rounds, while the other two are for the absorption and squeezing phases
of the sponge construction. The block register outputs the content of a block and the slice
z− 1 when needed to compute the θ parity. In this phase the register block receives back a
block of slices, and performs a shiĞing of the blocks to process the next block and store the
previous one.

A different routing is put in place when ρ and π are computed, it is necessary to read all
the state and write back the entire state, as depicted in Figure 4.4.

4.4.2 Results for Kђѐѐюј[r = 1024, c = 576]

Assuming that Nb divides the number of slices w, the number of cycles needed to compute
the rounds is Nb for the initial round and Nb + 1 for the central and final rounds. The total
latency of the permutation is nr + (nr + 1)Nb, so 24 + 25Nb for Kђѐѐюј- f [1600].

We have implemented in VHDL themid range core, with the parameter Nb ranging from
2 to 32. The cores have been synthesized using Synopsys Design Compiler and the technol-
ogy library from STMicroelectornics at 130 nm, as for the other cores. We report in Table 4.2
the silicon area required expressed in gate count as a function of the clock frequency and the
parameter Nb. With the technology library used, there is a negligible area saving with clock
frequency lower than 333MHz, thus we do not report the data below this frequency, while
the maximum frequency that the cores can reach is 625 MHz.

It is also possible to report the throughput of the mid range cores as a function of the
clock frequency and the parameter Nb, as represented in Table 4.3. The data refers to a rate of
r = 1024 bits, thus requiring additional 16 clock cycles for absorbing a block of the message.
Throughput is in the so-called long message scenario, where the squeezing of the output is

35 / 59

Kђѐѐюј implementation overview 4. Hardware

Figure 4.2: The mid-range core architecture, assuming Kђѐѐюј- f [1600] and Nb = 4 as exam-
ple.

Figure 4.3: The mid-range core register block, when applying θ, assuming Kђѐѐюј- f [1600]
and Nb = 4 as example.

36 / 59

4. Hardware Kђѐѐюј implementation overview

Figure 4.4: The mid-range core register block, when applying the ρ an π transformations,
assuming Kђѐѐюј- f [1600] and Nb = 4 as example.

Figure 4.5: The mid-range core register block, when doing absorption (top) and squeezing
(boĴom), assuming Kђѐѐюј- f [1600] and Nb = 4 as example.

37 / 59

Kђѐѐюј implementation overview 4. Hardware

Nb
MHz 2 4 8 16 32
333 3.79 2.43 1.42 0.77 0.40
500 5.68 3.65 1.16 1.16 0.60
625 7.11 4.57 2.66 1.45 0.76

Table 4.3: Throughput (Gbit/s) of Kђѐѐюј[r = 1024, c = 576] as a function of the clock fre-
quency and the number of blocks Nb

Architecture Size Throughput
(at 500MHz)

High-speed core 48.0 KGE 21.3 Gbit/s
Mid-range core with Nb = 2 28.3 KGE 5.7 Gbit/s
Mid-range core with Nb = 4 22.3 KGE 3.6 Gbit/s

Table 4.4: Comparison of the mid-range core and of the high-speed core for
Kђѐѐюј[r = 1024, c = 576] at 500MHz.

negligible. As expected, the increase of the parameter Nb allows to reduce the silicon area,
but also increase the latency for computing the permutation. Overall seems like the most
interesting values of Nb are 2 and 4 when looking at the figure of merit throughput per area
(see also Figure 4.4 for a comparison with the high-speed core). In all the configurations,
there is a fixed cost in term of area for the storing of the state and the logic associated with
the register block. The scaling of the area affecs only the area of the computational part for
χ and θ.

4.5 Low-area coprocessor

A different approach can be taken in the design of the hardware accelerator: the core can
use the system memory instead of having all the storage capabilities internally. The state of
Kђѐѐюј will be stored in memory and the coprocessor is equipped with registers for storing
only temporary variables.

This kind of coprocessor is suitable for smart cards or wireless sensor networks where
area is particularly important since it determines the cost of the device and there is no rich
operating system allowing to run different processes in parallel.

The architecture is depicted in figure 4.6 wherememory buffer labeledwith A is reserved
for the state, and B is reserved for temporary values. For the width of the data bus for per-
forming memory access different values can be taken. We consider it equal to the lane size
as a first assumption, and discuss later the implications if a smaller width is taken.

Internally the coprocessor is divided in two parts, a finite state machine (FSM) and a
data path. The data path is equippedwith 3 registers for storing temporary values. The FSM
computes the address to be read and set the control signals of the data path. The round is
computed in different phases.

• In a first phase the sheet parities are computed, and the 5 lanes of the parity are stored
in a dedicated area of the memory.

• The second phase computes θ, ρ and π. One-by-one the lanes of the state are read

38 / 59

4. Hardware Kђѐѐюј implementation overview

Figure 4.6: The low area coprocessor

39 / 59

Kђѐѐюј implementation overview 4. Hardware

and subject to θ by adding the corresponding sheet parities, to ρ by translation by the
appropriate offset and to π by writing to a memory cell with the appropriate address.
Now the intermediate state is completely stored in the buffer B.

• The last phase is to compute χ and add the ι round constant to the lane in position
(0, 0). For doing this the coprocessor reads 3 lanes of a plane from the intermediate
state, computes χ and writes the result to the buffer A, reads another element of the
intermediate value and writes the new χ, and so on for the 5 elements of the plane.

The computation of one round of the Kђѐѐюј- f permutation takes 215 clock cycles. Out
of these, 55 are bubbles where the core is computing internally and not transferring data to
or from the memory.

In a variant withmemorywords half the lane size, the number of clock cycles doubles but
only for the part relative to read and write, not for the bubbles. In such an implementation
one round of Kђѐѐюј- f requires 375 clock cycles.

The buffer A, where the input of the permutation is wriĴen and where the output of the
permutation is wriĴen and the end of the computation has the size of the state (25 times
the lane size), while the memory space for storing temporary values has the size of the state
times 1.2.

The low-area coprocessor has been coded in VHDL and simulated using Modelsim. As
the core depicted in Section 4.2, the coprocessor has been synthesized using ST technology
at 130 nm.

4.5.1 Kђѐѐюј[r = 1024, c = 576]

In this instantiation the computation of the Kђѐѐюј- f permutation takes 5160 clock cycles.
The coprocessor has a critical path of 1.5 nanoseconds and can run up to 666.7MHz resulting
in a throughput of 132Mbit/s. The area needed for aĴaining this clock frequency is 6.5 kgate.
If the core is synthesized for a clock frequency limited to 200MHz, the area requirement is
reduced to 5 kgate and the corresponding throughput is 39 Mbit/s. In both cases the amount
of area needed for the registers is about 1 kgate.

It is interesting to note that the low area coprocessor is capable of reaching higher fre-
quencies than the high speed core.

4.5.2 Kђѐѐюј[r = 40, c = 160]

In this instantiation the computation of the Kђѐѐюј- f permutation takes 3870 clock cycles.
The coprocessor has a critical path of 1.4 nanoseconds and can run up to 714 MHz resulting
in a throughput of of 6.87Mbit/s. The area for aĴaining this clock frequency is 1.6 kgate, If the
core is synthesized for a clock frequency limited to 200MHz (500MHz), the area requirement
is reduced to 1.3 (1.4) kgate and the corresponding throughput is 1.9 (4.8) Mbit/s. In both
cases the amount of area needed for the registers is in the order of 100 gates.

4.6 FPGA implementations

In Table 4.5, we report some figures we obtained on the coprocessor, as well as results from
third parties, making use of a lane-oriented, slice-oriented or high-speed architecture.

40 / 59

4. Hardware Kђѐѐюј implementation overview

Architecture Thr. Freq. Slices Latency Efficiency
(Mbit/s) (MHz) (+RAM) (clock cycles) (Mbit/s/slice)

Lane-wise 52 265 448 5160 0.12
Lane-wise [29] 501 520 151 (+3) 1062 3.32
Slice-wise [20] 813 159 372 200 2.18
High-speed [15] 12789 305 1384 24 9.24

Table 4.5: Performance of Kђѐѐюј[r = 1024, c = 576] on Virtex 5 (scaled to r = 1024 when
necessary). “(+3)” means that 3 RAM blocks are used in addition to the slices.

41 / 59

Kђѐѐюј implementation overview 4. Hardware

42 / 59

Chapter 5

Protection against side-channel aĴacks

If the input to Kђѐѐюј includes secret data or keys, side channel aĴacks may pose a threat.
In this chapter, we report on Kђѐѐюј implementations that offer a high level of resistance
against power analysis by using the technique of masking (secret sharing).

5.1 Introduction

Sponge functions, among which Kђѐѐюј, can be used in a wide range of modes covering
the full range of symmetric cryptography functions. We refer to [10, 4] for examples. This
includes functions that take as argument a secret key. Some other functions do not take a
secret key but take as input data that should remain secret such as pseudorandom sequence
generators or commit-challenge-response protocols. If such functionality is desired on de-
vices to which an adversary has some kind of physical or logical access, protection against
side channel and fault aĴacks is appropriate [3].

Side channel and fault aĴacks are aĴacks that do not exploit an inherent weakness of
an algorithm, but rather a characteristics of the implementation. For their security crypto-
graphic primitives inevitably rely on the fact that an adversary does not have access to in-
termediate computation results. As a consequence, even partial knowledge of intermediate
computation results can give a complete breakdown of security, e.g., by allowing compu-
tation of the key. However, actual implementations may leak information on these results
via characteristics such as computation time, power consumption or electromagnetic radia-
tion. Another condition for the security of cryptographic primitives is that they are executed
without faults. An implementation that makes faults, or can be manipulated to make faults,
may be completely insecure.

We here concentrate on countermeasures against power analysis and electromagnetic
radiation that make use of the algebraic properties of the step functions of Kђѐѐюј. In the
remainder of this chapter we will speak only about power analysis implying also electro-
magnetic analysis. The main difference between power analysis and electromagnetic anal-
ysis is that in the laĴer the adversary can make more sophisticated measurements and that
the physical and electronic countermeasures are different. The countermeasures at the algo-
rithmic level are however the same for both.

As far as timing aĴacks are concerned, it is straightforward to implement Kђѐѐюј in such
a way that its execution time is independent of the input it processes, both in soĞware as
in hardware. Moreover, Kђѐѐюј- f does not make use of large lookup tables so that cache
timing aĴacks pose no problem. The interleaving method of Section 2.1 can be implemented
with table lookups, which depend on the input message only. Of course, it can also be im-
plemented without any table at all.

43 / 59

Kђѐѐюј implementation overview 5. Protection against side-channel aĴacks

Protection against fault aĴacks can be achieved by countermeasures that are independent
of the cryptographic primitive being protected: fault detection at soĞware level, at hardware
level and byperforming computationsmultiple times and verifying that the results are equal.
Particularly good sources of information on side channel aĴacks and countermeasures are
the proceedings of the yearly CryptographicHardware and Embedded Systems (CHES) con-
ferences (http://www.chesworkshop.org/) and the text book [28]. A good source of informa-
tion on fault aĴacks and countermeasures are the proceedings of the yearly Fault Diagno-
sis and Tolerance in Cryptography (FDTC) workshops (http://conferenze.dei.polimi.it/
FDTC10/index.html).

5.2 Power analysis

The general set-up of power (and electromagnetic) analysis is that the aĴacker gets one or
more traces of the measured power consumption. If only a single trace suffices to mount
an aĴack, one speaks about simple power analysis (SPA). However, the dependence of the
signal in the variables being computed is typically small and obscured by noise. This can be
compensated for by taking many traces, each one representing an execution of the crypto-
graphic primitivewith different input values. Thesemany traces are then subject to statistical
methods to retrieve the key information. These aĴacks are called differential power analy-
sis (DPA) [21]. An important aspect in these aĴacks is that the traces must be aligned: they
must be combined in the time-domain such that corresponding computation steps coincide
between the different traces.

In DPA one distinguishes between first orderDPA and higher orderDPA. In first-order, the
aĴacker is limited to considering single time offsets of the traces. In m-th order the aĴacker
may incorporate up to m time offsets in the analysis. Higher-order aĴacks are in principle
more powerful but also much harder to implement [28].

In correlation power analysis (CPA) [13] one exploits the fact that the power consumption
may be correlated to the value of bits (or bitwise differences of bits) being processed at any
given moment. In short, one exploits this by taking many traces and partitioning them in
two subsets: in one set, a particular bit, the target bit, is systematically equal to 0 and in the
other it is equal to 1. Then one adds the traces in each of the two sets and subtracts the results
giving the compound trace. If now at any given time the power consumption is correlated to
the target bit, one sees a high value in the compound trace. One can use this to retrieve
key information by taking a target bit that depends on part of the key and trying different
partitions based on the hypothesis for that part of the key. If wrong key guesses result in
a partition where the bits of intermediate results are more or less balanced, the compound
trace of the correct key guesswill stand out. Note that if the power consumption is correlated
to bit values or differences, it is also correlated to theHamming values of words orHamming
distances between words.

Later, more advanced ways to measure the distance between distributions were intro-
duced. In particular, mutual information analysis (MIA) [17] is a generalization of CPA in
the sense that instead of just exploiting the fact that different bit valuesmay result in different
expected power consumption values, it is able to exploit the difference between the distri-
butions of the power consumption for a bit being 0 or 1 respectively. So in short, when the
power consumption distributions of a bit equal to 0 or 1 have equalmean values but different
shapes, CPA will not work while MIA may still be able to distinguish the two distributions.

44 / 59

http://www.chesworkshop.org/
http://conferenze.dei.polimi.it/FDTC10/index.html
http://conferenze.dei.polimi.it/FDTC10/index.html

5. Protection against side-channel aĴacks Kђѐѐюј implementation overview

5.2.1 Different types of countermeasures

In the light of power analysis aĴacks, one must aĴempt implementing the cryptographic
primitives such that the effort (or cost) of the adversary for retrieving the key is too high
for her to be interesting. An important countermeasure is implementing the cryptographic
primitives such that the power consumption and electromagnetic radiation leak as liĴle as
possible on the secret keys or data. Countermeasures can be implemented at several levels:

Transistor level Logical gates and circuits are built in such a way that the information leak-
age is reduced;

Platform level The platform supports features such as irregular clocking (clock jiĴer), ran-
dom insertion of dummy cycles and addition of noise to power consumption;

Program level The order of operations can be randomized or dummy instructions can be
inserted randomly to make the alignment of traces more difficult;

Algorithmic level The operations of the cryptographic algorithm are computed in such a
way that the information leakage is reduced;

Protocol level The protocol is designed such that it limits the number of computations an
aĴacker can conduct with a given key.

As opposed to protection against cryptographic aĴacks, protection against side channel
aĴacks is never expected to be absolute: a determined aĴacker with a massive amount of re-
sources will sooner or later be able to break an implementation. The engineering challenge
is to put in enough countermeasures such that the aĴack becomes too expensive to be inter-
esting. Products that offer a high level of security typically implement countermeasures on
multiple levels.

The countermeasures at transistor level are independent of the algorithm to be imple-
mented. Examples are wave dynamic differential logic (WDDL) [32] or SecLib [18]. These
types of logic are evolutions of the dual rail logic, where a bit is coded using two lines in
such a way that all the logic gates consume the same amount of energy independently of the
values. They imply dedicated hardware for cryptography which takes more area, requires
dedicated industrialization processes and is in general more expensive. Moreover, while
these countermeasures may significantly reduce the information leakage, there always re-
mains some leakage.

The countermeasures at platform level are also independent of the algorithm to be im-
plemented. By randomizing the execution timing, alignment of power traces is made more
difficult. The addition of noise to the power consumption increases the required number of
traces. The timing randomization is particularly efficient against higher-order DPA as there
the signals must be aligned in multiple places and any misalignment severely limits the ef-
fectiveness of aĴack. The addition of noise is also very efficient against aĴacks that look for
dependencies in higher moments of the distributions, such as MIA (see Section 5.5).

The countermeasures at program level are partially dependent on the algorithm to be
implemented. Insertion of dummy instructions is possible in any algorithm while changing
the order of operations may be easier for some algorithms than for others.

The countermeasures at protocol level are also independent of the algorithm. However,
what can be done at this level depends on the requirements of the application and in many
cases the possibilities are limited.

Finally, the countermeasures at algorithmic level depend on the basic operations used
in the algorithm. This is the type of countermeasures where the choice of operations in the

45 / 59

Kђѐѐюј implementation overview 5. Protection against side-channel aĴacks

cryptographic primitive is relevant. One of the countermeasures of this type is that of secret
sharing (or masking) and Kђѐѐюј is particularly well suited for it.

5.2.2 Secret sharing

Masking is a countermeasure that offers protection against DPA at the algorithmic level. It
consists of representing variables processed by a cryptographic primitive by two or more
shares (as in secret sharing) where the (usually bitwise) sum of the shares is equal to the
native variable. Subsequently the program or circuit computes the cryptographic primitive
using the shares in such a way that the processed variables are independent from the native
variables. Whether this is possible depends on the details of the cryptographic primitive and
the type of masking. In any case, to achieve independence for a native variable, all but one
of its shares must be generated (pseudo-)randomly for each execution of the cryptographic
primitive. Clearly, the generation of the shares, the masking operation of the input words
and unmasking operation of output, usually considered out of scope of DPA aĴacks, must
also be carefully implemented to limit information leakage. For masking to be effective, the
adversary shall have as liĴle information as possible on the value of the shares.

Taking two shares offers protection against first-order DPA under the condition that all
processed bits and their joint behavior at any time are independent from native variables.
Providing protection against m-th order DPA requires at least m + 1 shares.

Computing a linear function λ on the shares of a variable is straightforward. If we rep-
resent a native variable x by its shares xi with x = ∑i xi we can compute the shares yi of
y = λ(x) by simply applying λ on the individual shares: yi = λ(xi). A function that consists
of the addition of a constant can be performed by adding it to a single share. As all separate
operations are performed on shares that are independent of native variables, this provides
protection against first-order DPA.

Computing a nonlinear function on the shares assuring all variables processed are inde-
pendent of native variables depends on the nonlinear function at hand. This is in general a
non-trivial problem. We refer to [3] for some examples. In this chapter we limit ourselves to
the nonlinear step mapping χ in the round function of Kђѐѐюј- f :

xi ← xi + (xi+1 + 1)xi+2 . (5.1)

5.3 SoĞware implementation using two-share masking

For soĞware implementations, we have studied the application of masking with two shares,
denoted by a and b. The step mapping χ is very similar to nonlinear step mapping γ in
BюѠђKіћє, the cipher that is the subject of [14] and hence the techniques shown there can be
readily applied. We must now compute the shares of x at the leĞhand side of Equation (5.1)
in such a way that all intermediate variables are independent of native variables. This can
be realized by implementing following equations:

ai ← ai + (ai+1 + 1)ai+2 + ai+1bi+2
bi ← bi + (bi+1 + 1)bi+2 + bi+1ai+2 .

(5.2)

To achieve independence from native variables, the order in which the operations are exe-
cuted is important. If the expressions are evaluated leĞ to right, it can be shown that all in-
termediate variables are independent from native variables. The computations of all terms
except the rightmost one involve only variables of a single share, hence here independence
from x is automatic. For the addition of the mixed term to the intermediate result of the

46 / 59

5. Protection against side-channel aĴacks Kђѐѐюј implementation overview

computation, the presence of a[i] (or b[i]) as a linear term in the intermediate variable results
in independence.

We realize that the transformation within GF(2)10 depicted by Equation (5.2) is not a per-
mutation. The uniformity of the shares is therefore not preserved. A variant of this method
that provides a permutation is given in Section 5.3.1 below.

Although it means that some entropy is lost, this seems unfeasible to exploit in practice
according to our experiments.

At the algorithm level, the effect of the introduction of two shares in the computation
of the Kђѐѐюј- f round function is rather simple. The linear part λ can be executed on the
two shares separately, roughly doubling the workload. In the nonlinear step mapping χ the
computation of a state word according to Equation (5.1), taking a XOR, AND and NOT in-
struction, is replaced by the computation of the shares according to Equations (5.2), taking in
total 4 XOR, 4 AND and 2 NOT instructions. The addition of round constants ι and addition
of input blocks can be performed on one share only.

As the order of execution is important, it is not sufficient to write a program in C or
some other high-level language and compile it. The compilermay optimize away the desired
order. An option is to compile and inspect themachine code aĞerwards, but themethod that
provides the highest level of assurance is to program in assembly language. It is however
not sufficient to check only the sequencing of instructions. In general, the operations on two
shares of the same variable are preferably executed in registers physically isolated from each
other. More particularly, the program shall be such that at any given moment there is no
register (or bus) content or transition that is correlated to a native variable. For example,
if the number of shares is two and a register containing x0 is loaded with x1, the power
consumption can depend on the number of bits switched (e.g., on the Hamming weight of
x0 ⊕ x1) and it is likely to leak information on x. This can be solved by seĴing the register to
zero in between. Another example is the simultaneous processing of two shares of a variable
in different parts of the CPU. As the power consumption at any given moment depends on
all processing going on, it depends on both shares and and hence theremay be a dependence
on the native variable. Clearly, care must be taken when aĴempting to build side-channel
resistant implementations. So if sufficient care is taken, this provides provable resistance
against first-order DPA. Higher-order DPA is in principle still possible but as explained in
[14, Appendix A] very sensitive to noise and clock jiĴer. On smart cards, the addition of
noise, dummy cycles and clock jiĴer are typically supported by the platform.

5.3.1 Simplifying the soĞware implementation

The protection using two-share masking can be simplified by randomly choosing one of the
shares only once per evaluation of the permutation. Say that b is fixed during the rounds.
Then, Equation (5.2) can be changed into

ai ← ai + (ai+1 + 1)ai+2 + ai+1bi+2 + (bi+1 + 1)bi+2 + bi+1ai+2
bi ← bi .

(5.3)

Here again, the order of execution is important. Evaluating the XORs from leĞ to right, each
intermediate value is independent of the native values.

To compute the entire round, one has to apply the linear part λ onto both a and b. Alter-
natively, one can precompute y = b⊕ λ(b)⊕ x, with x is a random value chosen once per
evaluation of the permutation, and then update a as follows:

a ← λ(a)⊕ y⊕ x
b ← b .

(5.4)

47 / 59

Kђѐѐюј implementation overview 5. Protection against side-channel aĴacks

To simplify further, the mask b can be chosen such that b and λ(b) differ only over a
restricted support (e.g., a few lanes). Hence, the operation in Equation (5.4) require less
XORs and the value x can be restricted to the support of b⊕ λ(b).

5.4 Hardware using three-share masking

At first sight, masking with two shares may offer protection against first order CPA. How-
ever, in dedicated hardware the occurrence of glitches [23] may result in correlation between
the power consumption and native variables. In a combinatorial circuit computation is typ-
ically not monotonous but intermediate signals may switch several times per clock cycle
resulting in the (possible transient) appearance of native variables. Hence, due to glitches,
two-share masking cannot provide provable protection against first order CPA.

A solution to this problem was proposed in [24]. We refer to [24, 25] for an in-depth
treatment and limit ourselves here to the explanation of the basic concept. The simple but
powerful idea is to take as many shares as needed such that in any computation at least one
of the shares is not taken as input. In this way, all intermediate variables are guaranteed to be
independent from native variables for the same reason that the one-time pad offers perfect
secrecy. For linear functions two shares are sufficient to realize this. For nonlinear functions,
the required number of shares depends on the particular function.

As can be read in [24, 25], for most cryptographic algorithms, the mere number of shares
required makes the application of this technique very expensive. Fortunately, χ with its
simple structure iswell suited for applying this technique and only three shares are required.
This suitability is quite unique among cryptographic primitives. If we denote the shares by
a, b and c, a possible computation of χ applied to three shares is given by:

ai ← bi + (bi+1 + 1)bi+2 + bi+1ci+2 + ci+1bi+2
bi ← ci + (ci+1 + 1)ci+2 + ci+1ai+2 + ai+1ci+2
ci ← ai + (ai+1 + 1)ai+2 + ai+1bi+2 + bi+1ai+2 .

(5.5)

Clearly, the computation of each share takes as input only components of the other two shares
and it provides provable security against first order CPA, even in the presence of glitches.

For pipe-lining of non-linear layers, a uniformity condition is required, implying that the
transformation operating on the shares is a permutation [24, 25]. We realize that the trans-
formation within GF(2)15 depicted by Equation (5.5) does not satisfy this condition [1]. In
Kђѐѐюј- f , the quadratic step χ does not require pipe-lining to get correctness and incom-
pleteness with three shares. In principle, the potential problem is a gradual loss of entropy
as no new randomness is added to the shares. According to our experiments, this property
seems however unfeasible to exploit in practice. Furthermore, variants processing several
rows jointly exist, which reduce the loss.

The three lines of Equation (5.5) are equivalent and only differ in the input shares and
output share. We denote the computation of the nonlinear step χ′ resulting in a share given
the two other shares by, e.g., a← χ′(b, c).

In the following subsections we present two architectures that make use of three shares.
Other architectures can be derived based on different partitioning or sequences of the com-
putational steps composing the round. For instance a low area coprocessor, as those pre-
sented in Section 4.5, can be protected using the secret sharing techniques.

5.4.1 One-cycle round architecture

A first architecture computes one round in one clock cycle and is depicted in Figure 5.1.

48 / 59

5. Protection against side-channel aĴacks Kђѐѐюј implementation overview

Figure 5.1: Protected architecture computing one round in one clock cycle.

Before processing, the three shares a, b and c are generated from a random source. As the
initial state of Kђѐѐюј should be set equal to zero implying a + b + c = 0, the shares a and b
can be generated randomly and c computed as c = a + b. The hardware for generating the
three shares is out of the scope of our study, we just consider them as input to the core.

The combinatorial logic implements the round function and input data block absorbing.
It has a layered structure. In a first (linear) layer, the absorbing of the input data block, Din,
is implemented by adding it to one of the shares and then λ is applied to the three shares
by three separate combinatorial blocks. In a second layer, the nonlinear step mapping χ
is computed on the output of the first layer according to Equations (5.5) by three separate
combinatorial blocks implementing χ′. Each block takes as input two shares and generates
one share. The blocks only differ in the presence of ι in the leĞmost block as ι only needs to
be added to a single share.

We can estimate the cost of the secret sharing technique in terms of silicon area by com-
paring this architecture with our unprotected one-cycle round architecture in Section 4.2,
based on Figure 5.1 and Equations (5.5). The number of registers required for storing the
state is three times larger than the unprotected version. The cost of the linear part is three
times larger as well. Regarding the nonlinear part, we have three blocks χ′ instead of one χ
and the cost of every χ′ is also larger than that of χ. While χ requires basically an AND gate,

49 / 59

Kђѐѐюј implementation overview 5. Protection against side-channel aĴacks

a NOT and a XOR for each bit of the state, χ′ requires three AND gates, one NOT and three
XOR for a single share. So roughly, the protected nonlinear part is expected to be nine times
larger than the unprotected χ.

5.4.2 Three-cycle round architecture

A second architecture reduces the amount of silicon at the cost of performance and is de-
picted in Figure 5.2. Since the round logic is composed of three equal blocks for λ and three
equal blocks for χ′, we instantiate only one block of each and try to use them as much as
possible.

Instead of three registers this architecture requires four registers, somemultiplexing and
a careful schedule. The schedule has some similarity to pipelining techniques.

For explaining the schedule we refer to Table 5.1. We use λ(R0) to denote the application
of λ to register R0, and χ′(R1, R2) to denote the application of χ′ using registers R1 and R2
as inputs. The three initial values of the shares are indicated as A, B and C. The values aĞer
the first round by A′, B′ and C′, aĞer the second round by A′′, etc. At clock cycle zero the
registers do not yet contain any relevant data, as indicated with a −. Instead of loading the
three shares in parallel, as done in the previous architecture, one share per clock cycle is
loaded into register R0 during the three initial clock cycle.

The content of R1 is in general the result of λ applied to R0, with the Din enabled and
XORed at the input of λ(R0) before an initial Kђѐѐюј- f round.

The content of R0 is the result of χ′ applied to either the couple R2 and R1 or R2 and R3.
While in the one-cycle round architecture ι was applied only to one of the three shares, here
it is applied to all of the three shares. This does not change the result of the computation and
simplifies the control logic.

The registers R2 and R3 are used for maintaining the values required for the computation
of χ′. In the second clock cycle B is loaded into R0, and R1 receives λ(A). In the third clock
cycle C is loaded into R0, R1 receives λ(A) and λ(A) is moved from R1 to R2. In the fourth
clock cycle no more shares need to be loaded. Instead R0 receives χ′ applied to the content
of R1 and R2, which means λ(A) and λ(B). It follows that R0 now contains the share C′ aĞer
the first round. R1 receives λ(C), λ(B) is moved from R1 to R2 and λ(A) is moved from R2 to
R3. In the fiĞh clock cycle R0 receives χ′ applied to the content of R1 and R2, being λ(B) and
λ(C) and hence contains the share A aĞer the first round. R1 receives λ(C′), λ(C) is moved
from R1 to R2, while λ(A) remains in R3. Since shares A′ and C′ as input of the second round
have already been computed, in the next clock cycle share B′ must be computed, requiring
λ(A) and λ(C), and they are in R1 and R3 respectively before clock cycle five. Thus we have
described also what will be computed in the next clock cycle and this is basically the end of
a round. Starting from the next clock cycle there will be a loop of three clock cycles where
the alternation of data contained in the registers are those for computing a round.

Using this circuit, a Kђѐѐюј computation takes 3 initial cycles plus 24 cycles per execution
of Kђѐѐюј- f .

5.4.3 Synthesis results

We have implemented both architectures in VHDL and synthesized it for understanding the
maximum frequency and silicon area demand. We have used the same technology library
adopted for the unprotected implementation reported in Section 4.2, a 130 nm general pur-
pose library from STMicroelectronics, and the Synopsys Design Compiler.

Table 5.2 summarizes the gate count and performance numbers of the different imple-
mentations, together with the numbers for the one-cycle round unprotected architecture de-

50 / 59

5. Protection against side-channel aĴacks Kђѐѐюј implementation overview

cycle R0 R1 R2 R3

0 - - - -
1 input, A - - -
2 input, B λ(A + Din) - -
3 input, C λ(B) λ(A + Din) -
4 χ′(R2, R1), C′ λ(C) λ(B) λ(A + Din)
5 χ′(R2, R1), A′ λ(C′) λ(C) λ(A + Din)
6 χ′(R2, R3), B′ λ(A′) λ(C′) λ(C)
7 χ′(R2, R1), B′′ λ(B′) λ(A′) λ(C′)
8 χ′(R2, R1), C′′ λ(B′′) λ(B′) λ(C′)
9 χ′(R2, R3), A′′ λ(C′′) λ(B′′) λ(B′)
10 χ′(R2, R1), A′′′ λ(A′′) λ(C′′) λ(B′′)
11 χ′(R2, R1), B′′′ λ(A′′′) λ(A′′) λ(B′′)
12 χ′(R2, R3), C′′′ λ(B′′′) λ(A′′′) λ(A′′)

Table 5.1: The content of the registers during the computation.

Figure 5.2: Protected architecture computing one round in three clock cycles.

51 / 59

Kђѐѐюј implementation overview 5. Protection against side-channel aĴacks

Core Size Frequency Throughput
(r = 1024) KGE MHz Gbit/s.
Unprotected one-cycle 48 526 22.4
One-cycle (fast) 183 500 21.3
One-cycle (compact) 127 200 8.5
Three-cycle (fast) 115 714 10.1
Three-cycle (medium) 106 500 7.1
Three-cycle (compact) 95 200 2.8

Table 5.2: Performance and gate count of the different implementations

scribed in Section 4.2. It gives the total gate count, the maximum frequency and the through-
put assuming a bitrate of 1024 bits.

The gate count figures are in line with the estimations made in Section 5.4.1. All imple-
mentations have an I/O buffer of 9 Kilo gate equivalent (KGE) for connecting the core to a
system bus. This allows to load the I/O buffer, 64-bit per clock cycle, simultaneously with
the application of Kђѐѐюј- f on the previous input block.

In the three-cycle round architecture the computation of one round is executed in 3 clock
cycles and the initialization of the state requires also 3 clock cycles. Thanks to the very short
critical path, the fast variant of the three-cycle round architecture can reach 714 MHz, still
resulting in a very competitive speed of 10 Gbit/s. If we compare the one-cycle round and
the three-cycle round architectures both running at 500Mhz, we can see that the three-cycle
requires 40% less silicon area at a cost of a throughput reduction by a factor 3.

It is interesting to note that the strategy adopted in the design of the function allows
implementing this countermeasure with a cost consisting only of silicon area with almost no
penalty in terms of throughput: it is reduced only by 5%, from 22.4 Gbit/s. to 21.3 Gbit/s.
when using a rate of 1024 bits.

5.5 Computing in parallel or sequentially?

The use of three shares computed at different times gives a provable resistance against first-
order DPA, but not against DPA of higher order. Higher-order DPA involves taking mea-
surements corresponding to the computation of the different shares, and this task is more
complex due to its higher sensitivity to noise than first-order DPA [14, Appendix A].

In the architectures presented in the previous sections, several computations take place
in parallel and the power consumption at a given time depends on all these computations.
For this reason, these architectures are not provably resistant against first-order DPA. For
instance, in [25], the authors analyzed an implementation with three shares working in par-
allel. Storing the three shares in a register causes a power consumption to depend on the
three shares simultaneously. In the absence of noise, the distribution of the consumption
depends on the native variable being stored and hence is vulnerable to MIA. In this section,
we explain that the introduction of noise has amuch stronger impact on the feasibility of this
aĴack for a two-share or three-share implementation than for an unmasked one, and that the
qualitative difference is similar to the one between first-order and higher-order DPA. Fur-
thermore, we argue that amasked implementation has per construction a higher algorithmic
noise level than an unmasked one.

With three shares, a native bit equal to 0 (resp. 1) can be represented as 000, 011, 101 or
110 (resp. 001, 010, 101 or 111). If the three shares are processed simultaneously, the power

52 / 59

5. Protection against side-channel aĴacks Kђѐѐюј implementation overview

consumption can leak the Hamming weight of the shares, which means 0 or 2 for a native
bit 0, or 1 or 3 for a native bit 1. Clearly, these two distributions are different and can be
distinguished.

We start the discussion by constructing a simple model where the power consumption
is equal to the Hamming weight plus an additive Gaussian noise of standard deviation σ,
expressed in the same unit as the impact of theHammingweight on the power consumption.
In thismodel, the distribution of the power consumption for three shares is as in Figure 5.3(c),
with σ = 0.2. Similarly, we can look at an unmasked implementation, where the power
consumption is 0 or 1 plus the Gaussian noise, and at masking with two shares. In this last
case, the Hamming weight is 0 or 2 for a native bit 0 (represented as 00 or 11) or 1 for a
native bit 1 (represented as 01 or 10). The two cases can be found in Figures 5.3(a) and 5.3(b),
respectively.

(a) (b) (c)

(d) (e) (f)

Figure 5.3: Distribution of the power consumption for a simple model. The solid line shows
the distribution for a bit with native value 0 and the dashed line for a bit 1. Sub-figures (a),
(b) and (c) show the case of one, two and three shares, respectively, with a noise level of
σ = 0.2. Sub-figures (d), (e) and (f) follow the same model with σ = 2.

Following this model, we compute the number of samples that are needed to distinguish
between the distribution for a native bit 0 and the distribution for a native bit 1. We follow
the same reasoning as in [14, Appendix A]. The number z of samples needed to distinguish
one distribution over the other is inversely proportional to the Kullback-Leibler divergence
between the two distributions [22], z = 1/D(f |g) with

D(f |g) =
∫

f (x)(log(f (x))− log(g(x))dx.

In this model, the scaling of z as a function of σ is different for one, two or three shares.
For one share, z ∼ 2σ2 samples are needed to distinguish a native bit 0 from a native bit 1
from unmasked values, whereas about z2 samples are needed for the same noise level when
two shares are used, and this number grows to about z3 samples for three-share masking.
Hence, the difference between the one-share and two-share and three-share implementation

53 / 59

Kђѐѐюј implementation overview 5. Protection against side-channel aĴacks

is qualitatively the same as the one between first-order and second-order and third-order
DPA.

The real-world behavior is likely to differ from this simple model. Nevertheless, we ex-
pect a significantly higher sensitivity to noise for three shares than for one. Qualitatively,
the three pairs of distributions are different. For one share, the mean is different for native
bits 0 and 1. For two shares, the two distributions have the same mean but a different vari-
ance. For three shares, the two distributions have the same mean and variance; they differ
only starting from their third moment. Figures 5.3(d), 5.3(e) and 5.3(f) illustrate this with the
simple model and a higher noise level σ = 2.

So far, we have assumed that the three levels of masking are subject to the same noise
level σ. However, the masking by itself introduces noise, as m− 1 shares are randomly and
independently chosen for every execution of the algorithm. The very dependence of the
processing of a bit in the power consumption that an aĴacker exploits turns against her, as
it becomes an additional source of noise due the randomization. For instance, in the one-
cycle-one-round implementation of Kђѐѐюј- f [1600] with three shares, the noise due to the
Hamming weight of 3200 random bits must be compared to a small number of unmasked
bit values that a differential power analysis aĴempts at recovering.

54 / 59

Bibliography

[1] E. Alemneh, Sharing nonlinear gates in the presence of glitches, Master’s thesis, August
2010, http://essay.utwente.nl/59599/.

[2] D. J. Bernstein and T. Lange (editors), eBACS: ECRYPT Benchmarking of cryptographic
systems, http://bench.cr.yp.to, accessed 21 December 2010.

[3] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Note on side-channel aĴacks and
their countermeasures, Comment on theNISTHash Competition Forum,May 2009, http:
//keccak.noekeon.org/NoteSideChannelAttacks.pdf.

[4] , Cryptographic sponge functions, January 2011, http://sponge.noekeon.org/.

[5] ,Hardware implementation ofKђѐѐюј in VHDL, 2011, http://keccak.noekeon.org/.

[6] , Kђѐѐюј hardware performance figures page, 2011, http://keccak.noekeon.org/hw_
performance.html.

[7] , Kђѐѐюј soĞware performance figures page, 2011, http://keccak.noekeon.org/sw_
performance.html.

[8] , Known-answer and Monte Carlo test results, 2011, http://keccak.noekeon.org/.

[9] , Reference and optimized implementations ofKђѐѐюј, 2011, http://keccak.noekeon.
org/.

[10] , The Kђѐѐюј reference, January 2011, http://keccak.noekeon.org/.

[11] , The Kђѐѐюј SHA-3 submission, January 2011, http://keccak.noekeon.org/.

[12] , KђѐѐюјTќќљѠ soĞware, April 2012, http://keccak.noekeon.org/.

[13] E. Brier, C. Clavier, and F. Olivier, Correlation power analysis with a leakage model, CHES
(M. Joye and J.-J. Quisquater, eds.), Lecture Notes in Computer Science, vol. 3156,
Springer, 2004, pp. 16–29.

[14] J. Daemen, M. Peeters, and G. Van Assche, Bitslice ciphers and power analysis aĴacks, Fast
SoĞware Encryption 2000 (B. Schneier, ed.), Lecture Notes in Computer Science, vol.
1978, Springer, 2000, pp. 134–149.

[15] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, andM. U. Sharif, Comprehensive eval-
uation of high-speed and medium-speed implementations of five SHA-3 finalists using Xilinx
and Altera FPGAs, The Third SHA-3 Candidate Conference, 2012.

[16] G. Gielen and J. Figueras (eds.), 2004 design, automation and test in Europe conference and
exposition (DATE 2004), 16-20 February 2004, Paris, France, IEEE Computer Society, 2004.

55 / 59

http://essay.utwente.nl/59599/
http://bench.cr.yp.to
http://keccak.noekeon.org/NoteSideChannelAttacks.pdf
http://keccak.noekeon.org/NoteSideChannelAttacks.pdf
http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/hw_performance.html
http://keccak.noekeon.org/hw_performance.html
http://keccak.noekeon.org/sw_performance.html
http://keccak.noekeon.org/sw_performance.html
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/

Kђѐѐюј implementation overview BIBLIOGRAPHY

[17] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel,Mutual information analysis, CHES (E. Os-
wald and P. Rohatgi, eds.), Lecture Notes in Computer Science, vol. 5154, Springer,
2008, pp. 426–442.

[18] S. Guilley, P. Hoogvorst, Y. Mathieu, R. Pacalet, and J. Provost, CMOS structures suitable
for secured hardware, in Gielen and Figueras [16], pp. 1414–1415.

[19] G. Hoffmann, Kђѐѐюј implementation on GPU, 2010, http://www.cayrel.net/spip.php?
article189.

[20] B. Jungk and J. Apfelbeck, Area-efficient FPGA implementations of the SHA-3 finalists, In-
ternational Conference on ReConFigurable Computing and FPGAs (ReConfig), 2011, to
appear.

[21] P. C. Kocher, J. Jaffe, and B. Jun, Differential power analysis, Advances in Cryptology –
Crypto ’99 (M. Wiener, ed.), Lecture Notes in Computer Science, vol. 1666, Springer,
1999, pp. 388–397.

[22] S. Kullback andR. A. Leibler,On information and sufficiency, Ann.Math. Statist. 22 (1951),
no. 1, 79–86, http://projecteuclid.org/euclid.aoms/1177729694.

[23] S. Mangard, N. Pramstaller, and E. Oswald, Successfully aĴacking masked AES hardware
implementations, CHES (J.R. Rao and B. Sunar, eds.), LectureNotes in Computer Science,
vol. 3659, Springer, 2005, pp. 157–171.

[24] S. Nikova, V. Rĳmen, and M. Schläffer, Secure hardware implementation of nonlinear func-
tions in the presence of glitches, ICISC (P. J. Lee and J. H. Cheon, eds.), Lecture Notes in
Computer Science, vol. 5461, Springer, 2008, pp. 218–234.

[25] , Secure hardware implementation of nonlinear functions in the presence of glitches, J.
Cryptology 24 (2011), no. 2, 292–321.

[26] NIST, Announcing request for candidate algorithm nominations for a new cryptographic hash
algorithm (SHA-3) family, Federal Register Notices 72 (2007), no. 212, 62212–62220, http:
//csrc.nist.gov/groups/ST/hash/index.html.

[27] , ANSI C cryptographic API profile for SHA-3 candidate algorithm submissions, re-
vision 5, February 2008, available from http://csrc.nist.gov/groups/ST/hash/sha-3/
Submission_Reqs/crypto_API.html.

[28] E. Oswald S. Mangard and T. Popp, Power analysis aĴacks — revealing the secrets of smart-
cards, Springer-Verlag, 2007.

[29] İ. San and N. At, Compact Keccak hardware architecture for data integrity and authentication
on FPGAs, Information Security Journal: A Global Perspective (2012), to appear.

[30] G. Sevestre, Kђѐѐюј tree hashing on GPU, using Nvidia Cuda API, 2010, http://sites.
google.com/site/keccaktreegpu/.

[31] J. Strömbergson, Implementation of the Keccak hash function in FPGA devices, http://www.
strombergson.com/files/Keccak_in_FPGAs.pdf.

[32] K. Tiri and I. Verbauwhede,A logic level design methodology for a secure DPA resistant ASIC
or FPGA implementation, in Gielen and Figueras [16], pp. 246–251.

56 / 59

http://www.cayrel.net/spip.php?article189
http://www.cayrel.net/spip.php?article189
http://projecteuclid.org/euclid.aoms/1177729694
http://csrc.nist.gov/groups/ST/hash/index.html
http://csrc.nist.gov/groups/ST/hash/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Submission_Reqs/crypto_API.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Submission_Reqs/crypto_API.html
http://sites.google.com/site/keccaktreegpu/
http://sites.google.com/site/keccaktreegpu/
http://www.strombergson.com/files/Keccak_in_FPGAs.pdf
http://www.strombergson.com/files/Keccak_in_FPGAs.pdf

BIBLIOGRAPHY Kђѐѐюј implementation overview

[33] C. Wenzel-Benner and J. Gräf, XBX: keeping two eyes on embedded hashing, http://xbx.
das-labor.org/, accessed 21 December 2010.

57 / 59

http://xbx.das-labor.org/
http://xbx.das-labor.org/

Kђѐѐюј implementation overview BIBLIOGRAPHY

58 / 59

Appendix A

Change log

A.1 From 3.1 to 3.2

• Added a section on slice processing in Section 2.6.

• Added comments on the XOP and NEON instruction sets and on the ARM Cortex-M0
in Chapter 3.

• Removed outdated performance estimation on Intel 8051 processor from Chapter 3.

• Added the mid-range core in Section 4.4.

• Removed old FPGA results from Section 4.6.

• Added comment on non-uniformity of Equations (5.2) and (5.5).

• Added Section 5.3.1 on simplifying the soĞware implementation.

59 / 59

	General aspects
	Specifications summary
	Bit and byte numbering conventions
	Some justification for our choice

	Operation count
	Memory

	Implementation techniques
	Bit interleaving
	The lane complementing transform
	Extending the state for smoother scheduling
	Plane-per-plane processing
	Early parity
	Combining with bit interleaving

	Efficient in-place implementations
	Combining with bit interleaving

	Processing slices
	Processing consecutive slices
	Processing interleaved slices

	Software
	PC and high-end platforms
	Using 64-bit instructions
	Using SIMD instructions
	SIMD instructions and tree hashing
	Batch or tree hashing on a graphics processing unit

	Small 32-bit platforms
	Implementation on a ARM Cortex-M0 and -M3

	Small 8-bit platforms
	Implementation on a Atmel AVR processor

	Hardware
	Introduction
	High-speed core
	Variants of the high-speed core
	Keccak[r=1024, c=576]
	Keccak[r=40, c=160]

	Mid-range core
	Description
	Results for Keccak[r=1024, c=576]

	Low-area coprocessor
	Keccak[r=1024, c=576]
	Keccak[r=40, c=160]

	FPGA implementations

	Protection against side-channel attacks
	Introduction
	Power analysis
	Different types of countermeasures
	Secret sharing

	Software implementation using two-share masking
	Simplifying the software implementation

	Hardware using three-share masking
	One-cycle round architecture
	Three-cycle round architecture
	Synthesis results

	Computing in parallel or sequentially?

	Change log
	From 3.1 to 3.2

