- Notifications
You must be signed in to change notification settings - Fork 458
/
Copy pathmnist_dpsgd_tutorial_keras_model.py
145 lines (118 loc) · 4.82 KB
/
mnist_dpsgd_tutorial_keras_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright 2021, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training a CNN on MNIST with Keras and the DP SGD optimizer."""
fromabslimportapp
fromabslimportflags
fromabslimportlogging
importdp_accounting
importnumpyasnp
importtensorflowastf
fromtensorflow_privacy.privacy.keras_models.dp_keras_modelimportDPSequential
flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 0.1,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
flags.DEFINE_integer('batch_size', 250, 'Batch size')
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
flags.DEFINE_integer(
'microbatches', 250, 'Number of microbatches '
'(must evenly divide batch_size)')
flags.DEFINE_string('model_dir', None, 'Model directory')
FLAGS=flags.FLAGS
defcompute_epsilon(steps):
"""Computes epsilon value for given hyperparameters."""
ifFLAGS.noise_multiplier==0.0:
returnfloat('inf')
orders= [1+x/10.forxinrange(1, 100)] +list(range(12, 64))
accountant=dp_accounting.rdp.RdpAccountant(orders)
sampling_probability=FLAGS.batch_size/60000
event=dp_accounting.SelfComposedDpEvent(
dp_accounting.PoissonSampledDpEvent(
sampling_probability,
dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
accountant.compose(event)
# Delta is set to 1e-5 because MNIST has 60000 training points.
returnaccountant.get_epsilon(target_delta=1e-5)
defload_mnist():
"""Loads MNIST and preprocesses to combine training and validation data."""
train, test=tf.keras.datasets.mnist.load_data()
train_data, train_labels=train
test_data, test_labels=test
train_data=np.array(train_data, dtype=np.float32) /255
test_data=np.array(test_data, dtype=np.float32) /255
train_data=train_data.reshape((train_data.shape[0], 28, 28, 1))
test_data=test_data.reshape((test_data.shape[0], 28, 28, 1))
train_labels=np.array(train_labels, dtype=np.int32)
test_labels=np.array(test_labels, dtype=np.int32)
train_labels=tf.keras.utils.to_categorical(train_labels, num_classes=10)
test_labels=tf.keras.utils.to_categorical(test_labels, num_classes=10)
asserttrain_data.min() ==0.
asserttrain_data.max() ==1.
asserttest_data.min() ==0.
asserttest_data.max() ==1.
returntrain_data, train_labels, test_data, test_labels
defmain(unused_argv):
logging.set_verbosity(logging.INFO)
ifFLAGS.dpsgdandFLAGS.batch_size%FLAGS.microbatches!=0:
raiseValueError('Number of microbatches should divide evenly batch_size')
# Load training and test data.
train_data, train_labels, test_data, test_labels=load_mnist()
# Define a sequential Keras model
layers= [
tf.keras.layers.Conv2D(
16,
8,
strides=2,
padding='same',
activation='relu',
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPool2D(2, 1),
tf.keras.layers.Conv2D(
32, 4, strides=2, padding='valid', activation='relu'),
tf.keras.layers.MaxPool2D(2, 1),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(10)
]
ifFLAGS.dpsgd:
model=DPSequential(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=FLAGS.microbatches,
layers=layers,
)
else:
model=tf.keras.Sequential(layers=layers)
optimizer=tf.keras.optimizers.SGD(learning_rate=FLAGS.learning_rate)
loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True)
# Compile model with Keras
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
# Train model with Keras
model.fit(
train_data,
train_labels,
epochs=FLAGS.epochs,
validation_data=(test_data, test_labels),
batch_size=FLAGS.batch_size)
# Compute the privacy budget expended.
ifFLAGS.dpsgd:
eps=compute_epsilon(FLAGS.epochs*60000//FLAGS.batch_size)
print('For delta=1e-5, the current epsilon is: %.2f'%eps)
else:
print('Trained with vanilla non-private SGD optimizer')
if__name__=='__main__':
app.run(main)