- Notifications
You must be signed in to change notification settings - Fork 45.6k
/
Copy pathparsing_covering.py
246 lines (204 loc) · 9.88 KB
/
parsing_covering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Lint as: python2, python3
# Copyright 2019 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of the Parsing Covering metric.
Parsing Covering is a region-based metric for evaluating the task of
image parsing, aka panoptic segmentation.
Please see the paper for details:
"DeeperLab: Single-Shot Image Parser", Tien-Ju Yang, Maxwell D. Collins,
Yukun Zhu, Jyh-Jing Hwang, Ting Liu, Xiao Zhang, Vivienne Sze,
George Papandreou, Liang-Chieh Chen. arXiv: 1902.05093, 2019.
"""
from __future__ importabsolute_import
from __future__ importdivision
from __future__ importprint_function
importcollections
importnumpyasnp
importprettytable
importsix
fromdeeplab.evaluationimportbase_metric
classParsingCovering(base_metric.SegmentationMetric):
r"""Metric class for Parsing Covering.
Computes segmentation covering metric introduced in (Arbelaez, et al., 2010)
with extension to handle multi-class semantic labels (a.k.a. parsing
covering). Specifically, segmentation covering (SC) is defined in Eq. (8) in
(Arbelaez et al., 2010) as:
SC(c) = \sum_{R\in S}(|R| * \max_{R'\in S'}O(R,R')) / \sum_{R\in S}|R|,
where S are the groundtruth instance regions and S' are the predicted
instance regions. The parsing covering is simply:
PC = \sum_{c=1}^{C}SC(c) / C,
where C is the number of classes.
"""
def__init__(self,
num_categories,
ignored_label,
max_instances_per_category,
offset,
normalize_by_image_size=True):
"""Initialization for ParsingCovering.
Args:
num_categories: The number of segmentation categories (or "classes" in the
dataset.
ignored_label: A category id that is ignored in evaluation, e.g. the void
label as defined in COCO panoptic segmentation dataset.
max_instances_per_category: The maximum number of instances for each
category. Used in ensuring unique instance labels.
offset: The maximum number of unique labels. This is used, by multiplying
the ground-truth labels, to generate unique ids for individual regions
of overlap between groundtruth and predicted segments.
normalize_by_image_size: Whether to normalize groundtruth instance region
areas by image size. If True, groundtruth instance areas and weighted
IoUs will be divided by the size of the corresponding image before
accumulated across the dataset.
"""
super(ParsingCovering, self).__init__(num_categories, ignored_label,
max_instances_per_category, offset)
self.normalize_by_image_size=normalize_by_image_size
defcompare_and_accumulate(
self, groundtruth_category_array, groundtruth_instance_array,
predicted_category_array, predicted_instance_array):
"""See base class."""
# Allocate intermediate data structures.
max_ious=np.zeros([self.num_categories, self.max_instances_per_category],
dtype=np.float64)
gt_areas=np.zeros([self.num_categories, self.max_instances_per_category],
dtype=np.float64)
pred_areas=np.zeros(
[self.num_categories, self.max_instances_per_category],
dtype=np.float64)
# This is a dictionary in the format:
# {(category, gt_instance): [(pred_instance, intersection_area)]}.
intersections=collections.defaultdict(list)
# First, combine the category and instance labels so that every unique
# value for (category, instance) is assigned a unique integer label.
pred_segment_id=self._naively_combine_labels(predicted_category_array,
predicted_instance_array)
gt_segment_id=self._naively_combine_labels(groundtruth_category_array,
groundtruth_instance_array)
# Next, combine the groundtruth and predicted labels. Dividing up the pixels
# based on which groundtruth segment and which predicted segment they belong
# to, this will assign a different 32-bit integer label to each choice
# of (groundtruth segment, predicted segment), encoded as
# gt_segment_id * offset + pred_segment_id.
intersection_id_array= (
gt_segment_id.astype(np.uint32) *self.offset+
pred_segment_id.astype(np.uint32))
# For every combination of (groundtruth segment, predicted segment) with a
# non-empty intersection, this counts the number of pixels in that
# intersection.
intersection_ids, intersection_areas=np.unique(
intersection_id_array, return_counts=True)
# Find areas of all groundtruth and predicted instances, as well as of their
# intersections.
forintersection_id, intersection_areainsix.moves.zip(
intersection_ids, intersection_areas):
gt_segment_id=intersection_id//self.offset
gt_category=gt_segment_id//self.max_instances_per_category
ifgt_category==self.ignored_label:
continue
gt_instance=gt_segment_id%self.max_instances_per_category
gt_areas[gt_category, gt_instance] +=intersection_area
pred_segment_id=intersection_id%self.offset
pred_category=pred_segment_id//self.max_instances_per_category
pred_instance=pred_segment_id%self.max_instances_per_category
pred_areas[pred_category, pred_instance] +=intersection_area
ifpred_category!=gt_category:
continue
intersections[gt_category, gt_instance].append((pred_instance,
intersection_area))
# Find maximum IoU for every groundtruth instance.
forgt_label, instance_intersectionsinsix.iteritems(intersections):
category, gt_instance=gt_label
gt_area=gt_areas[category, gt_instance]
ious= []
forpred_instance, intersection_areaininstance_intersections:
pred_area=pred_areas[category, pred_instance]
union=gt_area+pred_area-intersection_area
ious.append(intersection_area/union)
max_ious[category, gt_instance] =max(ious)
# Normalize groundtruth instance areas by image size if necessary.
ifself.normalize_by_image_size:
gt_areas/=groundtruth_category_array.size
# Compute per-class weighted IoUs and areas summed over all groundtruth
# instances.
self.weighted_iou_per_class+=np.sum(max_ious*gt_areas, axis=-1)
self.gt_area_per_class+=np.sum(gt_areas, axis=-1)
returnself.result()
defresult_per_category(self):
"""See base class."""
returnbase_metric.realdiv_maybe_zero(self.weighted_iou_per_class,
self.gt_area_per_class)
def_valid_categories(self):
"""Categories with a "valid" value for the metric, have > 0 instances.
We will ignore the `ignore_label` class and other classes which have
groundtruth area of 0.
Returns:
Boolean array of shape `[num_categories]`.
"""
valid_categories=np.not_equal(self.gt_area_per_class, 0)
ifself.ignored_label>=0andself.ignored_label<self.num_categories:
valid_categories[self.ignored_label] =False
returnvalid_categories
defdetailed_results(self, is_thing=None):
"""See base class."""
valid_categories=self._valid_categories()
# If known, break down which categories are valid _and_ things/stuff.
category_sets=collections.OrderedDict()
category_sets['All'] =valid_categories
ifis_thingisnotNone:
category_sets['Things'] =np.logical_and(valid_categories, is_thing)
category_sets['Stuff'] =np.logical_and(valid_categories,
np.logical_not(is_thing))
covering_per_class=self.result_per_category()
results= {}
forcategory_set_name, in_category_setinsix.iteritems(category_sets):
ifnp.any(in_category_set):
results[category_set_name] = {
'pc': np.mean(covering_per_class[in_category_set]),
# The number of valid categories in this subset.
'n': np.sum(in_category_set.astype(np.int32)),
}
else:
results[category_set_name] = {'pc': 0, 'n': 0}
returnresults
defprint_detailed_results(self, is_thing=None, print_digits=3):
"""See base class."""
results=self.detailed_results(is_thing=is_thing)
tab=prettytable.PrettyTable()
tab.add_column('', [], align='l')
forfieldnamein ['PC', 'N']:
tab.add_column(fieldname, [], align='r')
forcategory_set, subset_resultsinsix.iteritems(results):
data_cols= [
round(subset_results['pc'], print_digits) *100, subset_results['n']
]
tab.add_row([category_set] +data_cols)
print(tab)
defresult(self):
"""See base class."""
covering_per_class=self.result_per_category()
valid_categories=self._valid_categories()
ifnotnp.any(valid_categories):
return0.
returnnp.mean(covering_per_class[valid_categories])
defmerge(self, other_instance):
"""See base class."""
self.weighted_iou_per_class+=other_instance.weighted_iou_per_class
self.gt_area_per_class+=other_instance.gt_area_per_class
defreset(self):
"""See base class."""
self.weighted_iou_per_class=np.zeros(
self.num_categories, dtype=np.float64)
self.gt_area_per_class=np.zeros(self.num_categories, dtype=np.float64)