- Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathprocess-stats-dir.py
executable file
·711 lines (636 loc) · 27.8 KB
/
process-stats-dir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
#!/usr/bin/env python3
#
# ==-- process-stats-dir - summarize one or more Swift -stats-output-dirs --==#
#
# This source file is part of the Swift.org open source project
#
# Copyright (c) 2014-2017 Apple Inc. and the Swift project authors
# Licensed under Apache License v2.0 with Runtime Library Exception
#
# See https://swift.org/LICENSE.txt for license information
# See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
#
# ==------------------------------------------------------------------------==#
#
# This file processes the contents of one or more directories generated by
# `swiftc -stats-output-dir` and emits summary data, traces etc. for analysis.
importargparse
importcsv
importio
importitertools
importjson
importos
importplatform
importre
importsys
importtime
importurllib
fromcollectionsimportnamedtuple
fromoperatorimportattrgetter
fromjobstatsimport (list_stats_dir_profiles,
load_stats_dir, merge_all_jobstats)
ifsys.version_info[0] <3:
importurllib2
Request=urllib2.Request
URLOpen=urllib2.urlopen
else:
importurllib.request
importurllib.parse
importurllib.error
Request=urllib.request.Request
URLOpen=urllib.request.urlopen
MODULE_PAT=re.compile(r'^(\w+)\.')
defmodule_name_of_stat(name):
returnre.match(MODULE_PAT, name).groups()[0]
defstat_name_minus_module(name):
returnre.sub(MODULE_PAT, '', name)
# Perform any custom processing of args here, in particular the
# select_stats_from_csv_baseline step, which is a bit subtle.
defvars_of_args(args):
vargs=vars(args)
ifargs.select_stats_from_csv_baselineisnotNone:
withio.open(args.select_stats_from_csv_baseline, 'r', encoding='utf-8') asf:
b=read_stats_dict_from_csv(f)
# Sniff baseline stat-names to figure out if they're module-qualified
# even when the user isn't asking us to _output_ module-grouped data.
all_triples=all(len(k.split('.')) ==3forkinb.keys())
ifargs.group_by_moduleorall_triples:
vargs['select_stat'] =set(stat_name_minus_module(k)
forkinb.keys())
else:
vargs['select_stat'] =b.keys()
returnvargs
# Passed args with 2-element remainder ["old", "new"], return a list of tuples
# of the form [(name, (oldstats, newstats))] where each name is a common subdir
# of each of "old" and "new", and the stats are those found in the respective
# dirs.
defload_paired_stats_dirs(args):
assertlen(args.remainder) ==2
paired_stats= []
(old, new) =args.remainder
vargs=vars_of_args(args)
forpinsorted(os.listdir(old)):
full_old=os.path.join(old, p)
full_new=os.path.join(new, p)
ifnot (os.path.exists(full_old) andos.path.isdir(full_old) and
os.path.exists(full_new) andos.path.isdir(full_new)):
continue
old_stats=load_stats_dir(full_old, **vargs)
new_stats=load_stats_dir(full_new, **vargs)
iflen(old_stats) ==0orlen(new_stats) ==0:
continue
paired_stats.append((p, (old_stats, new_stats)))
returnpaired_stats
defwrite_catapult_trace(args):
allstats= []
vargs=vars_of_args(args)
forpathinargs.remainder:
allstats+=load_stats_dir(path, **vargs)
allstats.sort(key=attrgetter('start_usec'))
foriinrange(len(allstats)):
allstats[i].jobid=i
json.dump([s.to_catapult_trace_obj() forsinallstats], args.output)
defwrite_lnt_values(args):
vargs=vars_of_args(args)
fordinargs.remainder:
stats=load_stats_dir(d, **vargs)
merged=merge_all_jobstats(stats, **vargs)
j=merged.to_lnt_test_obj(args)
ifargs.lnt_submitisNone:
json.dump(j, args.output, indent=4)
else:
url=args.lnt_submit
print("\nsubmitting to LNT server: "+url)
json_report= {'input_data': json.dumps(j), 'commit': '1'}
data=urllib.urlencode(json_report)
response_str=URLOpen(Request(url, data))
response=json.loads(response_str.read())
print("### response:")
print(response)
if'success'inresponse:
print("server response:\tSuccess")
else:
print("server response:\tError")
print("error:\t", response['error'])
sys.exit(1)
defshow_paired_incrementality(args):
fieldnames= ["old_pct", "old_skip",
"new_pct", "new_skip",
"delta_pct", "delta_skip",
"name"]
out=csv.DictWriter(args.output, fieldnames, dialect='excel-tab')
out.writeheader()
vargs=vars_of_args(args)
for (name, (oldstats, newstats)) inload_paired_stats_dirs(args):
olddriver=merge_all_jobstats((xforxinoldstats
ifx.is_driver_job()), **vargs)
newdriver=merge_all_jobstats((xforxinnewstats
ifx.is_driver_job()), **vargs)
ifolddriverisNoneornewdriverisNone:
continue
oldpct=olddriver.incrementality_percentage()
newpct=newdriver.incrementality_percentage()
deltapct=newpct-oldpct
oldskip=olddriver.driver_jobs_skipped()
newskip=newdriver.driver_jobs_skipped()
deltaskip=newskip-oldskip
out.writerow(dict(name=name,
old_pct=oldpct, old_skip=oldskip,
new_pct=newpct, new_skip=newskip,
delta_pct=deltapct, delta_skip=deltaskip))
defshow_incrementality(args):
fieldnames= ["incrementality", "name"]
out=csv.DictWriter(args.output, fieldnames, dialect='excel-tab')
out.writeheader()
vargs=vars_of_args(args)
forpathinargs.remainder:
stats=load_stats_dir(path, **vargs)
forsinstats:
ifs.is_driver_job():
pct=s.incrementality_percentage()
out.writerow(dict(name=os.path.basename(path),
incrementality=pct))
defdiff_and_pct(old, new):
ifold==0:
ifnew==0:
return (0, 0.0)
else:
return (new, 100.0)
delta= (new-old)
delta_pct=round((float(delta) /float(old)) *100.0, 2)
return (delta, delta_pct)
defupdate_epoch_value(d, name, epoch, value):
changed=0
ifnameind:
(existing_epoch, existing_value) =d[name]
ifexisting_epoch>epoch:
print("note: keeping newer value %d from epoch %d for %s"
% (existing_value, existing_epoch, name))
epoch=existing_epoch
value=existing_value
elifexisting_value==value:
epoch=existing_epoch
else:
(_, delta_pct) =diff_and_pct(existing_value, value)
print("note: changing value %d -> %d (%.2f%%) for %s"%
(existing_value, value, delta_pct, name))
changed=1
d[name] = (epoch, value)
return (epoch, value, changed)
defread_stats_dict_from_csv(f, select_stat=''):
infieldnames= ["epoch", "name", "value"]
c=csv.DictReader(f, infieldnames,
dialect='excel-tab',
quoting=csv.QUOTE_NONNUMERIC)
d= {}
sre=re.compile('.*'iflen(select_stat) ==0else
'|'.join(select_stat))
forrowinc:
epoch=int(row["epoch"])
name=row["name"]
ifsre.search(name) isNone:
continue
value=int(row["value"])
update_epoch_value(d, name, epoch, value)
returnd
# The idea here is that a "baseline" is a (tab-separated) CSV file full of
# the counters you want to track, each prefixed by an epoch timestamp of
# the last time the value was reset.
#
# When you set a fresh baseline, all stats in the provided stats dir are
# written to the baseline. When you set against an _existing_ baseline,
# only the counters mentioned in the existing baseline are updated, and
# only if their values differ.
#
# Finally, since it's a line-oriented CSV file, you can put:
#
# mybaseline.csv merge=union
#
# in your .gitattributes file, and forget about merge conflicts. The reader
# function above will take the later epoch anytime it detects duplicates,
# so union-merging is harmless. Duplicates will be eliminated whenever the
# next baseline-set is done.
defset_csv_baseline(args):
existing=None
vargs=vars_of_args(args)
ifos.path.exists(args.set_csv_baseline):
withio.open(args.set_csv_baseline, "r", encoding='utf-8', newline='\n') asf:
ss=vargs['select_stat']
existing=read_stats_dict_from_csv(f, select_stat=ss)
print("updating %d baseline entries in %s"%
(len(existing), args.set_csv_baseline))
else:
print("making new baseline "+args.set_csv_baseline)
fieldnames= ["epoch", "name", "value"]
def_open(path):
ifsys.version_info[0] <3:
returnopen(path, 'wb')
returnio.open(path, "w", encoding='utf-8', newline='\n')
with_open(args.set_csv_baseline) asf:
out=csv.DictWriter(f, fieldnames, dialect='excel-tab',
quoting=csv.QUOTE_NONNUMERIC)
m=merge_all_jobstats((sfordinargs.remainder
forsinload_stats_dir(d, **vargs)),
**vargs)
ifmisNone:
print("no stats found")
return1
changed=0
newepoch=int(time.time())
fornameinsorted(m.stats.keys()):
epoch=newepoch
value=m.stats[name]
ifexistingisnotNone:
ifnamenotinexisting:
continue
(epoch, value, chg) =update_epoch_value(existing, name,
epoch, value)
changed+=chg
out.writerow(dict(epoch=int(epoch),
name=name,
value=int(value)))
ifexistingisnotNone:
print("changed %d entries in baseline"%changed)
return0
OutputRow=namedtuple("OutputRow",
["name", "old", "new",
"delta", "delta_pct"])
defcompare_stats(args, old_stats, new_stats):
fornameinsorted(old_stats.keys()):
old=old_stats[name]
new=new_stats.get(name, 0)
(delta, delta_pct) =diff_and_pct(old, new)
yieldOutputRow(name=name,
old=int(old), new=int(new),
delta=int(delta),
delta_pct=delta_pct)
IMPROVED=-1
UNCHANGED=0
REGRESSED=1
defrow_state(row, args):
delta_pct_over_thresh=abs(row.delta_pct) >args.delta_pct_thresh
if (row.name.startswith("time.") or'.time.'inrow.name):
# Timers are judged as changing if they exceed
# the percentage _and_ absolute-time thresholds
delta_usec_over_thresh=abs(row.delta) >args.delta_usec_thresh
ifdelta_pct_over_threshanddelta_usec_over_thresh:
return (REGRESSEDifrow.delta>0elseIMPROVED)
elifdelta_pct_over_thresh:
return (REGRESSEDifrow.delta>0elseIMPROVED)
returnUNCHANGED
defwrite_comparison(args, old_stats, new_stats):
rows=list(compare_stats(args, old_stats, new_stats))
sort_key= (attrgetter('delta_pct')
ifargs.sort_by_delta_pct
elseattrgetter('name'))
regressed= [rforrinrowsifrow_state(r, args) ==REGRESSED]
unchanged= [rforrinrowsifrow_state(r, args) ==UNCHANGED]
improved= [rforrinrowsifrow_state(r, args) ==IMPROVED]
regressions=len(regressed)
ifargs.markdown:
defformat_time(v):
ifabs(v) >1000000:
return"{:.1f}s".format(v/1000000.0)
elifabs(v) >1000:
return"{:.1f}ms".format(v/1000.0)
else:
return"{:.1f}us".format(v)
defformat_field(field, row):
iffield=='name':
ifargs.group_by_module:
returnstat_name_minus_module(row.name)
else:
returnrow.name
eliffield=='delta_pct':
s=str(row.delta_pct) +"%"
ifargs.github_emoji:
ifrow_state(row, args) ==REGRESSED:
s+=" :no_entry:"
elifrow_state(row, args) ==IMPROVED:
s+=" :white_check_mark:"
returns
else:
v=int(getattr(row, field))
ifrow.name.startswith('time.'):
returnformat_time(v)
else:
return"{:,d}".format(v)
defformat_table(elts):
out=args.output
out.write('\n')
out.write(' | '.join(OutputRow._fields))
out.write('\n')
out.write(' | '.join('---:'for_inOutputRow._fields))
out.write('\n')
foreinelts:
out.write(' | '.join(format_field(f, e)
forfinOutputRow._fields))
out.write('\n')
defformat_details(name, elts, is_closed):
out=args.output
details='<details>\n'ifis_closedelse'<details open>\n'
out.write(details)
out.write('<summary>%s (%d)</summary>\n'
% (name, len(elts)))
ifargs.group_by_module:
defkeyfunc(e):
returnmodule_name_of_stat(e.name)
elts.sort(key=attrgetter('name'))
formod, groupinitertools.groupby(elts, keyfunc):
groupelts=list(group)
groupelts.sort(key=sort_key, reverse=args.sort_descending)
out.write(details)
out.write('<summary>%s in %s (%d)</summary>\n'
% (name, mod, len(groupelts)))
format_table(groupelts)
out.write('</details>\n')
else:
elts.sort(key=sort_key, reverse=args.sort_descending)
format_table(elts)
out.write('</details>\n')
closed_regressions= (args.close_regressionsorlen(regressed) ==0)
format_details('Regressed', regressed, closed_regressions)
format_details('Improved', improved, True)
format_details('Unchanged (delta < %s%% or delta < %s)'%
(args.delta_pct_thresh,
format_time(args.delta_usec_thresh)),
unchanged, True)
else:
rows.sort(key=sort_key, reverse=args.sort_descending)
out=csv.DictWriter(args.output, OutputRow._fields,
dialect='excel-tab')
out.writeheader()
forrowinrows:
ifrow_state(row, args) !=UNCHANGED:
out.writerow(row._asdict())
returnregressions
defcompare_to_csv_baseline(args):
vargs=vars_of_args(args)
withio.open(args.compare_to_csv_baseline, 'r', encoding='utf-8') asf:
old_stats=read_stats_dict_from_csv(f, select_stat=vargs['select_stat'])
m=merge_all_jobstats((sfordinargs.remainder
forsinload_stats_dir(d, **vargs)),
**vargs)
old_stats=dict((k, v) for (k, (_, v)) inold_stats.items())
new_stats=m.stats
returnwrite_comparison(args, old_stats, new_stats)
# Summarize immediate difference between two stats-dirs, optionally
defcompare_stats_dirs(args):
iflen(args.remainder) !=2:
raiseValueError("Expected exactly 2 stats-dirs")
vargs=vars_of_args(args)
(old, new) =args.remainder
old_stats=merge_all_jobstats(load_stats_dir(old, **vargs), **vargs)
new_stats=merge_all_jobstats(load_stats_dir(new, **vargs), **vargs)
returnwrite_comparison(args, old_stats.stats, new_stats.stats)
# Evaluate a boolean expression in terms of the provided stats-dir; all stats
# are projected into python dicts (thus variables in the eval expr) named by
# the last identifier in the stat definition. This means you can evaluate
# things like 'NumIRInsts < 1000' or
# 'NumTypesValidated == NumTypesDeserialized'
defevaluate(args):
iflen(args.remainder) !=1:
raiseValueError("Expected exactly 1 stats-dir to evaluate against")
d=args.remainder[0]
vargs=vars_of_args(args)
merged=merge_all_jobstats(load_stats_dir(d, **vargs), **vargs)
env= {}
ident=re.compile(r'(\w+)$')
for (k, v) inmerged.stats.items():
ifk.startswith("time.") or'.time.'ink:
continue
m=re.search(ident, k)
ifm:
i=m.groups()[0]
ifargs.verbose:
print("%s => %s"% (i, v))
env[i] =v
try:
ifeval(args.evaluate, env):
return0
else:
print("evaluate condition failed: '%s'"%args.evaluate)
return1
exceptExceptionase:
print(e)
return1
# Evaluate a boolean expression in terms of deltas between the provided two
# stats-dirs; works like evaluate() above but on absolute differences
defevaluate_delta(args):
iflen(args.remainder) !=2:
raiseValueError("Expected exactly 2 stats-dirs to evaluate-delta")
(old, new) =args.remainder
vargs=vars_of_args(args)
old_stats=merge_all_jobstats(load_stats_dir(old, **vargs), **vargs)
new_stats=merge_all_jobstats(load_stats_dir(new, **vargs), **vargs)
env= {}
ident=re.compile(r'(\w+)$')
forrincompare_stats(args, old_stats.stats, new_stats.stats):
ifr.name.startswith("time.") or'.time.'inr.name:
continue
m=re.search(ident, r.name)
ifm:
i=m.groups()[0]
ifargs.verbose:
print("%s => %s"% (i, r.delta))
env[i] =r.delta
try:
ifeval(args.evaluate_delta, env):
return0
else:
print("evaluate-delta condition failed: '%s'"%
args.evaluate_delta)
return1
exceptExceptionase:
print(e)
return1
defrender_profiles(args):
flamegraph_pl=args.flamegraph_script
ifflamegraph_plisNone:
importdistutils.spawn
flamegraph_pl=distutils.spawn.find_executable("flamegraph.pl")
ifflamegraph_plisNone:
print("Need flamegraph.pl in $PATH, or pass --flamegraph-script")
vargs=vars_of_args(args)
forstatsdirinargs.remainder:
jobprofs=list_stats_dir_profiles(statsdir, **vargs)
index_path=os.path.join(statsdir, "profile-index.html")
all_profile_types=set([kforkeysin [j.profiles.keys()
forjinjobprofs
ifj.profilesisnotNone]
forkinkeys])
withopen(index_path, "wb") asindex:
forptypeinall_profile_types:
index.write("<h2>Profile type: "+ptype+"</h2>\n")
index.write("<ul>\n")
forjinjobprofs:
ifj.is_frontend_job():
index.write(" <li>"+
("Module %s :: %s"%
(j.module, " ".join(j.jobargs))) +"\n")
index.write(" <ul>\n")
profiles=sorted(j.profiles.get(ptype, {}).items())
forcounter, pathinprofiles:
title= ("Module: %s, File: %s, "
"Counter: %s, Profile: %s"%
(j.module, j.input, counter, ptype))
subtitle=j.triple+", -"+j.opt
svg=os.path.abspath(path+".svg")
withopen(path) asp, open(svg, "wb") asg:
importsubprocess
print("Building flamegraph "+svg)
subprocess.check_call([flamegraph_pl,
"--title", title,
"--subtitle", subtitle],
stdin=p, stdout=g)
link= ("<tt><a href=\"file://%s\">%s</a></tt>"%
(svg, counter))
index.write(" <li>"+link+"\n")
index.write(" </ul>\n")
index.write(" </li>\n")
ifargs.browse_profiles:
importwebbrowser
webbrowser.open_new_tab("file://"+os.path.abspath(index_path))
defprocess(args):
ifargs.catapult:
write_catapult_trace(args)
elifargs.compare_stats_dirs:
returncompare_stats_dirs(args)
elifargs.set_csv_baselineisnotNone:
returnset_csv_baseline(args)
elifargs.compare_to_csv_baselineisnotNone:
returncompare_to_csv_baseline(args)
elifargs.incrementality:
ifargs.paired:
show_paired_incrementality(args)
else:
show_incrementality(args)
elifargs.lnt:
write_lnt_values(args)
elifargs.evaluate:
returnevaluate(args)
elifargs.evaluate_delta:
returnevaluate_delta(args)
elifargs.render_profiles:
returnrender_profiles(args)
returnNone
defmain():
parser=argparse.ArgumentParser()
parser.add_argument("--verbose", action="store_true",
help="Report activity verbosely")
parser.add_argument("--output", default="-",
type=argparse.FileType('w'),
help="Write output to file")
parser.add_argument("--paired", action="store_true",
help="Process two dirs-of-stats-dirs, pairwise")
parser.add_argument("--delta-pct-thresh", type=float, default=0.01,
help="Percentage change required to report")
parser.add_argument("--delta-usec-thresh", type=int, default=100000,
help="Absolute delta on times required to report")
parser.add_argument("--lnt-machine", type=str, default=platform.node(),
help="Machine name for LNT submission")
parser.add_argument("--lnt-run-info", action='append', default=[],
type=lambdakv: kv.split("="),
help="Extra key=value pairs for LNT run-info")
parser.add_argument("--lnt-machine-info", action='append', default=[],
type=lambdakv: kv.split("="),
help="Extra key=value pairs for LNT machine-info")
parser.add_argument("--lnt-order", type=str,
default=str(int(time.time())),
help="Order for LNT submission")
parser.add_argument("--lnt-tag", type=str, default="swift-compile",
help="Tag for LNT submission")
parser.add_argument("--lnt-submit", type=str, default=None,
help="URL to submit LNT data to (rather than print)")
parser.add_argument("--select-module",
default=[],
action="append",
help="Select specific modules")
parser.add_argument("--group-by-module",
default=False,
action="store_true",
help="Group stats by module")
parser.add_argument("--select-stat",
default=[],
action="append",
help="Select specific statistics")
parser.add_argument("--select-stats-from-csv-baseline",
type=str, default=None,
help="Select statistics present in a CSV baseline")
parser.add_argument("--exclude-timers",
default=False,
action="store_true",
help="only select counters, exclude timers")
parser.add_argument("--sort-by-delta-pct",
default=False,
action="store_true",
help="Sort comparison results by delta-%%, not stat")
parser.add_argument("--sort-descending",
default=False,
action="store_true",
help="Sort comparison results in descending order")
parser.add_argument("--merge-by",
default="sum",
type=str,
help="Merge identical metrics by (sum|min|max)")
parser.add_argument("--merge-timers",
default=False,
action="store_true",
help="Merge timers across modules/targets/etc.")
parser.add_argument("--divide-by",
default=1,
metavar="D",
type=int,
help="Divide stats by D (to take an average)")
parser.add_argument("--markdown",
default=False,
action="store_true",
help="Write output in markdown table format")
parser.add_argument("--include-unchanged",
default=False,
action="store_true",
help="Include unchanged stats values in comparison")
parser.add_argument("--close-regressions",
default=False,
action="store_true",
help="Close regression details in markdown")
parser.add_argument("--github-emoji",
default=False,
action="store_true",
help="Add github-emoji indicators to markdown")
modes=parser.add_mutually_exclusive_group(required=True)
modes.add_argument("--catapult", action="store_true",
help="emit a 'catapult'-compatible trace of events")
modes.add_argument("--incrementality", action="store_true",
help="summarize the 'incrementality' of a build")
modes.add_argument("--set-csv-baseline", type=str, default=None,
help="Merge stats from a stats-dir into a CSV baseline")
modes.add_argument("--compare-to-csv-baseline", type=str, default=None,
metavar="BASELINE.csv",
help="Compare stats dir to named CSV baseline")
modes.add_argument("--compare-stats-dirs",
action="store_true",
help="Compare two stats dirs directly")
modes.add_argument("--lnt", action="store_true",
help="Emit an LNT-compatible test summary")
modes.add_argument("--evaluate", type=str, default=None,
help="evaluate an expression of stat-names")
modes.add_argument("--evaluate-delta", type=str, default=None,
help="evaluate an expression of stat-deltas")
modes.add_argument("--render-profiles", action="store_true",
help="render any profiles to SVG flamegraphs")
parser.add_argument("--flamegraph-script", type=str, default=None,
help="path to flamegraph.pl")
parser.add_argument("--browse-profiles", action="store_true",
help="open web browser tabs with rendered profiles")
parser.add_argument('remainder', nargs=argparse.REMAINDER,
help="stats-dirs to process")
args=parser.parse_args()
iflen(args.remainder) ==0:
parser.print_help()
return1
try:
returnprocess(args)
finally:
args.output.close()
sys.exit(main())