forked from llvm/llvm-project
- Notifications
You must be signed in to change notification settings - Fork 339
/
Copy pathICF.cpp
623 lines (563 loc) · 24.7 KB
/
ICF.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
//===- ICF.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include"ICF.h"
#include"ConcatOutputSection.h"
#include"Config.h"
#include"InputSection.h"
#include"SymbolTable.h"
#include"Symbols.h"
#include"UnwindInfoSection.h"
#include"lld/Common/CommonLinkerContext.h"
#include"llvm/Support/LEB128.h"
#include"llvm/Support/Parallel.h"
#include"llvm/Support/TimeProfiler.h"
#include"llvm/Support/xxhash.h"
#include<atomic>
usingnamespacellvm;
usingnamespacelld;
usingnamespacelld::macho;
staticconstexprbool verboseDiagnostics = false;
// This counter is used to generate unique thunk names.
staticuint64_t icfThunkCounter = 0;
classICF {
public:
ICF(std::vector<ConcatInputSection *> &inputs);
voidrun();
using EqualsFn = bool (ICF::*)(const ConcatInputSection *,
const ConcatInputSection *);
voidsegregate(size_t begin, size_t end, EqualsFn);
size_tfindBoundary(size_t begin, size_t end);
voidforEachClassRange(size_t begin, size_t end,
llvm::function_ref<void(size_t, size_t)> func);
voidforEachClass(llvm::function_ref<void(size_t, size_t)> func);
boolequalsConstant(const ConcatInputSection *ia,
const ConcatInputSection *ib);
boolequalsVariable(const ConcatInputSection *ia,
const ConcatInputSection *ib);
voidapplySafeThunksToRange(size_t begin, size_t end);
// ICF needs a copy of the inputs vector because its equivalence-class
// segregation algorithm destroys the proper sequence.
std::vector<ConcatInputSection *> icfInputs;
unsigned icfPass = 0;
std::atomic<bool> icfRepeat{false};
std::atomic<uint64_t> equalsConstantCount{0};
std::atomic<uint64_t> equalsVariableCount{0};
};
ICF::ICF(std::vector<ConcatInputSection *> &inputs) {
icfInputs.assign(inputs.begin(), inputs.end());
}
// ICF = Identical Code Folding
//
// We only fold __TEXT,__text, so this is really "code" folding, and not
// "COMDAT" folding. String and scalar constant literals are deduplicated
// elsewhere.
//
// Summary of segments & sections:
//
// The __TEXT segment is readonly at the MMU. Some sections are already
// deduplicated elsewhere (__TEXT,__cstring & __TEXT,__literal*) and some are
// synthetic and inherently free of duplicates (__TEXT,__stubs &
// __TEXT,__unwind_info). Note that we don't yet run ICF on __TEXT,__const,
// because doing so induces many test failures.
//
// The __LINKEDIT segment is readonly at the MMU, yet entirely synthetic, and
// thus ineligible for ICF.
//
// The __DATA_CONST segment is read/write at the MMU, but is logically const to
// the application after dyld applies fixups to pointer data. We currently
// fold only the __DATA_CONST,__cfstring section.
//
// The __DATA segment is read/write at the MMU, and as application-writeable
// data, none of its sections are eligible for ICF.
//
// Please see the large block comment in lld/ELF/ICF.cpp for an explanation
// of the segregation algorithm.
//
// FIXME(gkm): implement keep-unique attributes
// FIXME(gkm): implement address-significance tables for MachO object files
// Compare "non-moving" parts of two ConcatInputSections, namely everything
// except references to other ConcatInputSections.
boolICF::equalsConstant(const ConcatInputSection *ia,
const ConcatInputSection *ib) {
if (verboseDiagnostics)
++equalsConstantCount;
// We can only fold within the same OutputSection.
if (ia->parent != ib->parent)
returnfalse;
if (ia->data.size() != ib->data.size())
returnfalse;
if (ia->data != ib->data)
returnfalse;
if (ia->relocs.size() != ib->relocs.size())
returnfalse;
auto f = [](const Reloc &ra, const Reloc &rb) {
if (ra.type != rb.type)
returnfalse;
if (ra.pcrel != rb.pcrel)
returnfalse;
if (ra.length != rb.length)
returnfalse;
if (ra.offset != rb.offset)
returnfalse;
if (isa<Symbol *>(ra.referent) != isa<Symbol *>(rb.referent))
returnfalse;
InputSection *isecA, *isecB;
uint64_t valueA = 0;
uint64_t valueB = 0;
if (isa<Symbol *>(ra.referent)) {
constauto *sa = cast<Symbol *>(ra.referent);
constauto *sb = cast<Symbol *>(rb.referent);
if (sa->kind() != sb->kind())
returnfalse;
// ICF runs before Undefineds are treated (and potentially converted into
// DylibSymbols).
if (isa<DylibSymbol>(sa) || isa<Undefined>(sa))
return sa == sb && ra.addend == rb.addend;
assert(isa<Defined>(sa));
constauto *da = cast<Defined>(sa);
constauto *db = cast<Defined>(sb);
if (!da->isec() || !db->isec()) {
assert(da->isAbsolute() && db->isAbsolute());
return da->value + ra.addend == db->value + rb.addend;
}
isecA = da->isec();
valueA = da->value;
isecB = db->isec();
valueB = db->value;
} else {
isecA = cast<InputSection *>(ra.referent);
isecB = cast<InputSection *>(rb.referent);
}
// Typically, we should not encounter sections marked with `keepUnique` at
// this point as they would have resulted in different hashes and therefore
// no need for a full comparison.
// However, in `safe_thunks` mode, it's possible for two different
// relocations to reference identical `keepUnique` functions that will be
// distinguished later via thunks - so we need to handle this case
// explicitly.
if ((isecA != isecB) && ((isecA->keepUnique && isCodeSection(isecA)) ||
(isecB->keepUnique && isCodeSection(isecB))))
returnfalse;
if (isecA->parent != isecB->parent)
returnfalse;
// Sections with identical parents should be of the same kind.
assert(isecA->kind() == isecB->kind());
// We will compare ConcatInputSection contents in equalsVariable.
if (isa<ConcatInputSection>(isecA))
return ra.addend == rb.addend;
// Else we have two literal sections. References to them are equal iff their
// offsets in the output section are equal.
if (isa<Symbol *>(ra.referent))
// For symbol relocs, we compare the contents at the symbol address. We
// don't do `getOffset(value + addend)` because value + addend may not be
// a valid offset in the literal section.
return isecA->getOffset(valueA) == isecB->getOffset(valueB) &&
ra.addend == rb.addend;
else {
assert(valueA == 0 && valueB == 0);
// For section relocs, we compare the content at the section offset.
return isecA->getOffset(ra.addend) == isecB->getOffset(rb.addend);
}
};
returnstd::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(),
f);
}
// Compare the "moving" parts of two ConcatInputSections -- i.e. everything not
// handled by equalsConstant().
boolICF::equalsVariable(const ConcatInputSection *ia,
const ConcatInputSection *ib) {
if (verboseDiagnostics)
++equalsVariableCount;
assert(ia->relocs.size() == ib->relocs.size());
auto f = [this](const Reloc &ra, const Reloc &rb) {
// We already filtered out mismatching values/addends in equalsConstant.
if (ra.referent == rb.referent)
returntrue;
const ConcatInputSection *isecA, *isecB;
if (isa<Symbol *>(ra.referent)) {
// Matching DylibSymbols are already filtered out by the
// identical-referent check above. Non-matching DylibSymbols were filtered
// out in equalsConstant(). So we can safely cast to Defined here.
constauto *da = cast<Defined>(cast<Symbol *>(ra.referent));
constauto *db = cast<Defined>(cast<Symbol *>(rb.referent));
if (da->isAbsolute())
returntrue;
isecA = dyn_cast<ConcatInputSection>(da->isec());
if (!isecA)
returntrue; // literal sections were checked in equalsConstant.
isecB = cast<ConcatInputSection>(db->isec());
} else {
constauto *sa = cast<InputSection *>(ra.referent);
constauto *sb = cast<InputSection *>(rb.referent);
isecA = dyn_cast<ConcatInputSection>(sa);
if (!isecA)
returntrue;
isecB = cast<ConcatInputSection>(sb);
}
return isecA->icfEqClass[icfPass % 2] == isecB->icfEqClass[icfPass % 2];
};
if (!std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(), f))
returnfalse;
// If there are symbols with associated unwind info, check that the unwind
// info matches. For simplicity, we only handle the case where there are only
// symbols at offset zero within the section (which is typically the case with
// .subsections_via_symbols.)
auto hasUnwind = [](Defined *d) { return d->unwindEntry() != nullptr; };
constauto *itA = llvm::find_if(ia->symbols, hasUnwind);
constauto *itB = llvm::find_if(ib->symbols, hasUnwind);
if (itA == ia->symbols.end())
return itB == ib->symbols.end();
if (itB == ib->symbols.end())
returnfalse;
const Defined *da = *itA;
const Defined *db = *itB;
if (da->unwindEntry()->icfEqClass[icfPass % 2] !=
db->unwindEntry()->icfEqClass[icfPass % 2] ||
da->value != 0 || db->value != 0)
returnfalse;
auto isZero = [](Defined *d) { return d->value == 0; };
returnstd::find_if_not(std::next(itA), ia->symbols.end(), isZero) ==
ia->symbols.end() &&
std::find_if_not(std::next(itB), ib->symbols.end(), isZero) ==
ib->symbols.end();
}
// Find the first InputSection after BEGIN whose equivalence class differs
size_tICF::findBoundary(size_t begin, size_t end) {
uint64_t beginHash = icfInputs[begin]->icfEqClass[icfPass % 2];
for (size_t i = begin + 1; i < end; ++i)
if (beginHash != icfInputs[i]->icfEqClass[icfPass % 2])
return i;
return end;
}
// Invoke FUNC on subranges with matching equivalence class
voidICF::forEachClassRange(size_t begin, size_t end,
llvm::function_ref<void(size_t, size_t)> func) {
while (begin < end) {
size_t mid = findBoundary(begin, end);
func(begin, mid);
begin = mid;
}
}
// Find or create a symbol at offset 0 in the given section
static Symbol *getThunkTargetSymbol(ConcatInputSection *isec) {
for (Symbol *sym : isec->symbols)
if (auto *d = dyn_cast<Defined>(sym))
if (d->value == 0)
return sym;
std::string thunkName;
if (isec->symbols.size() == 0)
thunkName = isec->getName().str() + ".icf.0";
else
thunkName = isec->getName().str() + "icf.thunk.target" +
std::to_string(icfThunkCounter++);
// If no symbol found at offset 0, create one
auto *sym = make<Defined>(thunkName, /*file=*/nullptr, isec,
/*value=*/0, /*size=*/isec->getSize(),
/*isWeakDef=*/false, /*isExternal=*/false,
/*isPrivateExtern=*/false, /*isThumb=*/false,
/*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
isec->symbols.push_back(sym);
return sym;
}
// Given a range of identical icfInputs, replace address significant functions
// with a thunk that is just a direct branch to the first function in the
// series. This way we keep only one main body of the function but we still
// retain the address uniqueness of relevant functions by having them be a
// direct branch thunk rather than containing a full copy of the actual function
// body.
voidICF::applySafeThunksToRange(size_t begin, size_t end) {
// When creating a unique ICF thunk, use the first section as the section that
// all thunks will branch to.
ConcatInputSection *masterIsec = icfInputs[begin];
// If the first section is not address significant, sorting guarantees that
// there are no address significant functions. So we can skip this range.
if (!masterIsec->keepUnique)
return;
// Skip anything that is not a code section.
if (!isCodeSection(masterIsec))
return;
// If the functions we're dealing with are smaller than the thunk size, then
// just leave them all as-is - creating thunks would be a net loss.
uint32_t thunkSize = target->getICFSafeThunkSize();
if (masterIsec->data.size() <= thunkSize)
return;
// Get the symbol that all thunks will branch to.
Symbol *masterSym = getThunkTargetSymbol(masterIsec);
for (size_t i = begin + 1; i < end; ++i) {
ConcatInputSection *isec = icfInputs[i];
// When we're done processing keepUnique entries, we can stop. Sorting
// guaratees that all keepUnique will be at the front.
if (!isec->keepUnique)
break;
ConcatInputSection *thunk =
makeSyntheticInputSection(isec->getSegName(), isec->getName());
addInputSection(thunk);
target->initICFSafeThunkBody(thunk, masterSym);
thunk->foldIdentical(isec, Symbol::ICFFoldKind::Thunk);
// Since we're folding the target function into a thunk, we need to adjust
// the symbols that now got relocated from the target function to the thunk.
// Since the thunk is only one branch, we move all symbols to offset 0 and
// make sure that the size of all non-zero-size symbols is equal to the size
// of the branch.
for (auto *sym : thunk->symbols) {
sym->value = 0;
if (sym->size != 0)
sym->size = thunkSize;
}
}
}
// Split icfInputs into shards, then parallelize invocation of FUNC on subranges
// with matching equivalence class
voidICF::forEachClass(llvm::function_ref<void(size_t, size_t)> func) {
// Only use threads when the benefits outweigh the overhead.
constsize_t threadingThreshold = 1024;
if (icfInputs.size() < threadingThreshold) {
forEachClassRange(0, icfInputs.size(), func);
++icfPass;
return;
}
// Shard into non-overlapping intervals, and call FUNC in parallel. The
// sharding must be completed before any calls to FUNC are made so that FUNC
// can modify the InputSection in its shard without causing data races.
constsize_t shards = 256;
size_t step = icfInputs.size() / shards;
size_t boundaries[shards + 1];
boundaries[0] = 0;
boundaries[shards] = icfInputs.size();
parallelFor(1, shards, [&](size_t i) {
boundaries[i] = findBoundary((i - 1) * step, icfInputs.size());
});
parallelFor(1, shards + 1, [&](size_t i) {
if (boundaries[i - 1] < boundaries[i]) {
forEachClassRange(boundaries[i - 1], boundaries[i], func);
}
});
++icfPass;
}
voidICF::run() {
// Into each origin-section hash, combine all reloc referent section hashes.
for (icfPass = 0; icfPass < 2; ++icfPass) {
parallelForEach(icfInputs, [&](ConcatInputSection *isec) {
uint32_t hash = isec->icfEqClass[icfPass % 2];
for (const Reloc &r : isec->relocs) {
if (auto *sym = r.referent.dyn_cast<Symbol *>()) {
if (auto *defined = dyn_cast<Defined>(sym)) {
if (defined->isec()) {
if (auto *referentIsec =
dyn_cast<ConcatInputSection>(defined->isec()))
hash += defined->value + referentIsec->icfEqClass[icfPass % 2];
else
hash += defined->isec()->kind() +
defined->isec()->getOffset(defined->value);
} else {
hash += defined->value;
}
} else {
// ICF runs before Undefined diags
assert(isa<Undefined>(sym) || isa<DylibSymbol>(sym));
}
}
}
// Set MSB to 1 to avoid collisions with non-hashed classes.
isec->icfEqClass[(icfPass + 1) % 2] = hash | (1ull << 31);
});
}
llvm::stable_sort(
icfInputs, [](const ConcatInputSection *a, const ConcatInputSection *b) {
// When using safe_thunks, ensure that we first sort by icfEqClass and
// then by keepUnique (descending). This guarantees that within an
// equivalence class, the keepUnique inputs are always first.
if (config->icfLevel == ICFLevel::safe_thunks)
if (a->icfEqClass[0] == b->icfEqClass[0])
return a->keepUnique > b->keepUnique;
return a->icfEqClass[0] < b->icfEqClass[0];
});
forEachClass([&](size_t begin, size_t end) {
segregate(begin, end, &ICF::equalsConstant);
});
// Split equivalence groups by comparing relocations until convergence
do {
icfRepeat = false;
forEachClass([&](size_t begin, size_t end) {
segregate(begin, end, &ICF::equalsVariable);
});
} while (icfRepeat);
log("ICF needed " + Twine(icfPass) + " iterations");
if (verboseDiagnostics) {
log("equalsConstant() called " + Twine(equalsConstantCount) + " times");
log("equalsVariable() called " + Twine(equalsVariableCount) + " times");
}
// When using safe_thunks, we need to create thunks for all keepUnique
// functions that can be deduplicated. Since we're creating / adding new
// InputSections, we can't paralellize this.
if (config->icfLevel == ICFLevel::safe_thunks)
forEachClassRange(0, icfInputs.size(), [&](size_t begin, size_t end) {
applySafeThunksToRange(begin, end);
});
// Fold sections within equivalence classes
forEachClass([&](size_t begin, size_t end) {
if (end - begin < 2)
return;
bool useSafeThunks = config->icfLevel == ICFLevel::safe_thunks;
// For ICF level safe_thunks, replace keepUnique function bodies with
// thunks. For all other ICF levles, directly merge the functions.
ConcatInputSection *beginIsec = icfInputs[begin];
for (size_t i = begin + 1; i < end; ++i) {
// Skip keepUnique inputs when using safe_thunks (already handeled above)
if (useSafeThunks && icfInputs[i]->keepUnique) {
// Assert keepUnique sections are either small or replaced with thunks.
assert(!icfInputs[i]->live ||
icfInputs[i]->data.size() <= target->getICFSafeThunkSize());
assert(!icfInputs[i]->replacement ||
icfInputs[i]->replacement->data.size() ==
target->getICFSafeThunkSize());
continue;
}
beginIsec->foldIdentical(icfInputs[i]);
}
});
}
// Split an equivalence class into smaller classes.
voidICF::segregate(size_t begin, size_t end, EqualsFn equals) {
while (begin < end) {
// Divide [begin, end) into two. Let mid be the start index of the
// second group.
auto bound = std::stable_partition(
icfInputs.begin() + begin + 1, icfInputs.begin() + end,
[&](ConcatInputSection *isec) {
return (this->*equals)(icfInputs[begin], isec);
});
size_t mid = bound - icfInputs.begin();
// Split [begin, end) into [begin, mid) and [mid, end). We use mid as an
// equivalence class ID because every group ends with a unique index.
for (size_t i = begin; i < mid; ++i)
icfInputs[i]->icfEqClass[(icfPass + 1) % 2] = mid;
// If we created a group, we need to iterate the main loop again.
if (mid != end)
icfRepeat = true;
begin = mid;
}
}
voidmacho::markSymAsAddrSig(Symbol *s) {
if (auto *d = dyn_cast_or_null<Defined>(s))
if (d->isec())
d->isec()->keepUnique = true;
}
voidmacho::markAddrSigSymbols() {
TimeTraceScope timeScope("Mark addrsig symbols");
for (InputFile *file : inputFiles) {
ObjFile *obj = dyn_cast<ObjFile>(file);
if (!obj)
continue;
Section *addrSigSection = obj->addrSigSection;
if (!addrSigSection)
continue;
assert(addrSigSection->subsections.size() == 1);
const InputSection *isec = addrSigSection->subsections[0].isec;
for (const Reloc &r : isec->relocs) {
if (auto *sym = r.referent.dyn_cast<Symbol *>())
markSymAsAddrSig(sym);
else
error(toString(isec) + ": unexpected section relocation");
}
}
}
// Given a symbol that was folded into a thunk, return the symbol pointing to
// the actual body of the function. We use this approach rather than storing the
// needed info in the Defined itself in order to minimize memory usage.
Defined *macho::getBodyForThunkFoldedSym(Defined *foldedSym) {
assert(isa<ConcatInputSection>(foldedSym->originalIsec) &&
"thunk-folded ICF symbol expected to be on a ConcatInputSection");
// foldedSec is the InputSection that was marked as deleted upon fold
ConcatInputSection *foldedSec =
cast<ConcatInputSection>(foldedSym->originalIsec);
// thunkBody is the actual live thunk, containing the code that branches to
// the actual body of the function.
InputSection *thunkBody = foldedSec->replacement;
// The symbol of the merged body of the function that the thunk jumps to. This
// will end up in the final binary.
Symbol *targetSym = target->getThunkBranchTarget(thunkBody);
return cast<Defined>(targetSym);
}
voidmacho::foldIdenticalSections(bool onlyCfStrings) {
TimeTraceScope timeScope("Fold Identical Code Sections");
// The ICF equivalence-class segregation algorithm relies on pre-computed
// hashes of InputSection::data for the ConcatOutputSection::inputs and all
// sections referenced by their relocs. We could recursively traverse the
// relocs to find every referenced InputSection, but that precludes easy
// parallelization. Therefore, we hash every InputSection here where we have
// them all accessible as simple vectors.
// If an InputSection is ineligible for ICF, we give it a unique ID to force
// it into an unfoldable singleton equivalence class. Begin the unique-ID
// space at inputSections.size(), so that it will never intersect with
// equivalence-class IDs which begin at 0. Since hashes & unique IDs never
// coexist with equivalence-class IDs, this is not necessary, but might help
// someone keep the numbers straight in case we ever need to debug the
// ICF::segregate()
std::vector<ConcatInputSection *> foldable;
uint64_t icfUniqueID = inputSections.size();
// Reset the thunk counter for each run of ICF.
icfThunkCounter = 0;
for (ConcatInputSection *isec : inputSections) {
bool isFoldableWithAddendsRemoved = isCfStringSection(isec) ||
isClassRefsSection(isec) ||
isSelRefsSection(isec);
// NOTE: __objc_selrefs is typically marked as no_dead_strip by MC, but we
// can still fold it.
bool hasFoldableFlags = (isSelRefsSection(isec) ||
sectionType(isec->getFlags()) == MachO::S_REGULAR);
bool isCodeSec = isCodeSection(isec);
// When keepUnique is true, the section is not foldable. Unless we are at
// icf level safe_thunks, in which case we still want to fold code sections.
// When using safe_thunks we'll apply the safe_thunks logic at merge time
// based on the 'keepUnique' flag.
bool noUniqueRequirement =
!isec->keepUnique ||
((config->icfLevel == ICFLevel::safe_thunks) && isCodeSec);
// FIXME: consider non-code __text sections as foldable?
bool isFoldable = (!onlyCfStrings || isCfStringSection(isec)) &&
(isCodeSec || isFoldableWithAddendsRemoved ||
isGccExceptTabSection(isec)) &&
noUniqueRequirement && !isec->hasAltEntry &&
!isec->shouldOmitFromOutput() && hasFoldableFlags;
if (isFoldable) {
foldable.push_back(isec);
for (Defined *d : isec->symbols)
if (d->unwindEntry())
foldable.push_back(d->unwindEntry());
// Some sections have embedded addends that foil ICF's hashing / equality
// checks. (We can ignore embedded addends when doing ICF because the same
// information gets recorded in our Reloc structs.) We therefore create a
// mutable copy of the section data and zero out the embedded addends
// before performing any hashing / equality checks.
if (isFoldableWithAddendsRemoved) {
// We have to do this copying serially as the BumpPtrAllocator is not
// thread-safe. FIXME: Make a thread-safe allocator.
MutableArrayRef<uint8_t> copy = isec->data.copy(bAlloc());
for (const Reloc &r : isec->relocs)
target->relocateOne(copy.data() + r.offset, r, /*va=*/0,
/*relocVA=*/0);
isec->data = copy;
}
} elseif (!isEhFrameSection(isec)) {
// EH frames are gathered as foldables from unwindEntry above; give a
// unique ID to everything else.
isec->icfEqClass[0] = ++icfUniqueID;
}
}
parallelForEach(foldable, [](ConcatInputSection *isec) {
assert(isec->icfEqClass[0] == 0); // don't overwrite a unique ID!
// Turn-on the top bit to guarantee that valid hashes have no collisions
// with the small-integer unique IDs for ICF-ineligible sections
isec->icfEqClass[0] = xxh3_64bits(isec->data) | (1ull << 31);
});
// Now that every input section is either hashed or marked as unique, run the
// segregation algorithm to detect foldable subsections.
ICF(foldable).run();
}