- Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathfm.py
78 lines (63 loc) · 2.53 KB
/
fm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# coding:utf-8
importautograd.numpyasnp
fromautogradimportelementwise_grad
frommla.baseimportBaseEstimator
frommla.metricsimportmean_squared_error, binary_crossentropy
np.random.seed(9999)
"""
References:
Factorization Machines http://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
"""
classBaseFM(BaseEstimator):
def__init__(
self, n_components=10, max_iter=100, init_stdev=0.1, learning_rate=0.01, reg_v=0.1, reg_w=0.5, reg_w0=0.0
):
"""Simplified factorization machines implementation using SGD optimizer."""
self.reg_w0=reg_w0
self.reg_w=reg_w
self.reg_v=reg_v
self.n_components=n_components
self.lr=learning_rate
self.init_stdev=init_stdev
self.max_iter=max_iter
self.loss=None
self.loss_grad=None
deffit(self, X, y=None):
self._setup_input(X, y)
# bias
self.wo=0.0
# Feature weights
self.w=np.zeros(self.n_features)
# Factor weights
self.v=np.random.normal(scale=self.init_stdev, size=(self.n_features, self.n_components))
self._train()
def_train(self):
forepochinrange(self.max_iter):
y_pred=self._predict(self.X)
loss=self.loss_grad(self.y, y_pred)
w_grad=np.dot(loss, self.X) /float(self.n_samples)
self.wo-=self.lr* (loss.mean() +2*self.reg_w0*self.wo)
self.w-=self.lr*w_grad+ (2*self.reg_w*self.w)
self._factor_step(loss)
def_factor_step(self, loss):
forix, xinenumerate(self.X):
foriinrange(self.n_features):
v_grad=loss[ix] * (x.dot(self.v).dot(x[i])[0] -self.v[i] *x[i] **2)
self.v[i] -=self.lr*v_grad+ (2*self.reg_v*self.v[i])
def_predict(self, X=None):
linear_output=np.dot(X, self.w)
factors_output=np.sum(np.dot(X, self.v) **2-np.dot(X**2, self.v**2), axis=1) /2.0
returnself.wo+linear_output+factors_output
classFMRegressor(BaseFM):
deffit(self, X, y=None):
super(FMRegressor, self).fit(X, y)
self.loss=mean_squared_error
self.loss_grad=elementwise_grad(mean_squared_error)
classFMClassifier(BaseFM):
deffit(self, X, y=None):
super(FMClassifier, self).fit(X, y)
self.loss=binary_crossentropy
self.loss_grad=elementwise_grad(binary_crossentropy)
defpredict(self, X=None):
predictions=self._predict(X)
returnnp.sign(predictions)