- Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathcheat_sheet_py3.rst
399 lines (301 loc) · 13 KB
/
cheat_sheet_py3.rst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
.. _cheat-sheet-py3:
Type hints cheat sheet
======================
This document is a quick cheat sheet showing how to use type
annotations for various common types in Python.
Variables
*********
Technically many of the type annotations shown below are redundant,
since mypy can usually infer the type of a variable from its value.
See :ref:`type-inference-and-annotations` for more details.
.. code-block:: python
# This is how you declare the type of a variable
age: int=1
# You don't need to initialize a variable to annotate it
a: int# Ok (no value at runtime until assigned)
# Doing so can be useful in conditional branches
child: bool
if age <18:
child =True
else:
child =False
Useful built-in types
*********************
.. code-block:: python
# For most types, just use the name of the type in the annotation
# Note that mypy can usually infer the type of a variable from its value,
# so technically these annotations are redundant
x: int=1
x: float=1.0
x: bool=True
x: str="test"
x: bytes=b"test"
# For collections on Python 3.9+, the type of the collection item is in brackets
x: list[int] = [1]
x: set[int] = {6, 7}
# For mappings, we need the types of both keys and values
x: dict[str, float] = {"field": 2.0} # Python 3.9+
# For tuples of fixed size, we specify the types of all the elements
x: tuple[int, str, float] = (3, "yes", 7.5) # Python 3.9+
# For tuples of variable size, we use one type and ellipsis
x: tuple[int, ...] = (1, 2, 3) # Python 3.9+
# On Python 3.8 and earlier, the name of the collection type is
# capitalized, and the type is imported from the 'typing' module
from typing import List, Set, Dict, Tuple
x: List[int] = [1]
x: Set[int] = {6, 7}
x: Dict[str, float] = {"field": 2.0}
x: Tuple[int, str, float] = (3, "yes", 7.5)
x: Tuple[int, ...] = (1, 2, 3)
from typing import Union, Optional
# On Python 3.10+, use the | operator when something could be one of a few types
x: list[int|str] = [3, 5, "test", "fun"] # Python 3.10+
# On earlier versions, use Union
x: list[Union[int, str]] = [3, 5, "test", "fun"]
# Use X | None for a value that could be None on Python 3.10+
# Use Optional[X] on 3.9 and earlier; Optional[X] is the same as 'X | None'
x: str|None="something"if some_condition() elseNone
if x isnotNone:
# Mypy understands x won't be None here because of the if-statement
print(x.upper())
# If you know a value can never be None due to some logic that mypy doesn't
# understand, use an assert
assert x isnotNone
print(x.upper())
Functions
*********
.. code-block:: python
from collections.abc import Iterator, Callable
from typing import Union, Optional
# This is how you annotate a function definition
defstringify(num: int) -> str:
returnstr(num)
# And here's how you specify multiple arguments
defplus(num1: int, num2: int) -> int:
return num1 + num2
# If a function does not return a value, use None as the return type
# Default value for an argument goes after the type annotation
defshow(value: str, excitement: int=10) -> None:
print(value +"!"* excitement)
# Note that arguments without a type are dynamically typed (treated as Any)
# and that functions without any annotations are not checked
defuntyped(x):
x.anything() +1+"string"# no errors
# This is how you annotate a callable (function) value
x: Callable[[int, float], float] = f
defregister(callback: Callable[[str], int]) -> None: ...
# A generator function that yields ints is secretly just a function that
# returns an iterator of ints, so that's how we annotate it
defgen(n: int) -> Iterator[int]:
i =0
while i < n:
yield i
i +=1
# You can of course split a function annotation over multiple lines
defsend_email(
address: str| list[str],
sender: str,
cc: list[str] |None,
bcc: list[str] |None,
subject: str='',
body: list[str] |None=None,
) -> bool:
...
# Mypy understands positional-only and keyword-only arguments
# Positional-only arguments can also be marked by using a name starting with
# two underscores
defquux(x: int, /, *, y: int) -> None:
pass
quux(3, y=5) # Ok
quux(3, 5) # error: Too many positional arguments for "quux"
quux(x=3, y=5) # error: Unexpected keyword argument "x" for "quux"
# This says each positional arg and each keyword arg is a "str"
defcall(self, *args: str, **kwargs: str) -> str:
reveal_type(args) # Revealed type is "tuple[str, ...]"
reveal_type(kwargs) # Revealed type is "dict[str, str]"
request = make_request(*args, **kwargs)
returnself.do_api_query(request)
Classes
*******
.. code-block:: python
from typing import ClassVar
classBankAccount:
# The "__init__" method doesn't return anything, so it gets return
# type "None" just like any other method that doesn't return anything
def__init__(self, account_name: str, initial_balance: int=0) -> None:
# mypy will infer the correct types for these instance variables
# based on the types of the parameters.
self.account_name = account_name
self.balance = initial_balance
# For instance methods, omit type for "self"
defdeposit(self, amount: int) -> None:
self.balance += amount
defwithdraw(self, amount: int) -> None:
self.balance -= amount
# User-defined classes are valid as types in annotations
account: BankAccount = BankAccount("Alice", 400)
deftransfer(src: BankAccount, dst: BankAccount, amount: int) -> None:
src.withdraw(amount)
dst.deposit(amount)
# Functions that accept BankAccount also accept any subclass of BankAccount!
classAuditedBankAccount(BankAccount):
# You can optionally declare instance variables in the class body
audit_log: list[str]
def__init__(self, account_name: str, initial_balance: int=0) -> None:
super().__init__(account_name, initial_balance)
self.audit_log: list[str] = []
defdeposit(self, amount: int) -> None:
self.audit_log.append(f"Deposited {amount}")
self.balance += amount
defwithdraw(self, amount: int) -> None:
self.audit_log.append(f"Withdrew {amount}")
self.balance -= amount
audited = AuditedBankAccount("Bob", 300)
transfer(audited, account, 100) # type checks!
# You can use the ClassVar annotation to declare a class variable
classCar:
seats: ClassVar[int] =4
passengers: ClassVar[list[str]]
# If you want dynamic attributes on your class, have it
# override "__setattr__" or "__getattr__"
classA:
# This will allow assignment to any A.x, if x is the same type as "value"
# (use "value: Any" to allow arbitrary types)
def__setattr__(self, name: str, value: int) -> None: ...
# This will allow access to any A.x, if x is compatible with the return type
def__getattr__(self, name: str) -> int: ...
a = A()
a.foo =42# Works
a.bar ='Ex-parrot'# Fails type checking
When you're puzzled or when things are complicated
**************************************************
.. code-block:: python
from typing import Union, Any, Optional, TYPE_CHECKING, cast
# To find out what type mypy infers for an expression anywhere in
# your program, wrap it in reveal_type(). Mypy will print an error
# message with the type; remove it again before running the code.
reveal_type(1) # Revealed type is "builtins.int"
# If you initialize a variable with an empty container or "None"
# you may have to help mypy a bit by providing an explicit type annotation
x: list[str] = []
x: str|None=None
# Use Any if you don't know the type of something or it's too
# dynamic to write a type for
x: Any = mystery_function()
# Mypy will let you do anything with x!
x.whatever() * x["you"] + x("want") -any(x) andall(x) issuper# no errors
# Use a "type: ignore" comment to suppress errors on a given line,
# when your code confuses mypy or runs into an outright bug in mypy.
# Good practice is to add a comment explaining the issue.
x = confusing_function() # type:ignore# confusing_function won't return None here because ...
# "cast" is a helper function that lets you override the inferred
# type of an expression. It's only for mypy -- there's no runtime check.
a = [4]
b = cast(list[int], a) # Passes fine
c = cast(list[str], a) # Passes fine despite being a lie (no runtime check)
reveal_type(c) # Revealed type is "builtins.list[builtins.str]"
print(c) # Still prints [4] ... the object is not changed or casted at runtime
# Use "TYPE_CHECKING" if you want to have code that mypy can see but will not
# be executed at runtime (or to have code that mypy can't see)
ifTYPE_CHECKING:
import json
else:
import orjson as json # mypy is unaware of this
In some cases type annotations can cause issues at runtime, see
:ref:`runtime_troubles` for dealing with this.
See :ref:`silencing-type-errors` for details on how to silence errors.
Standard "duck types"
*********************
In typical Python code, many functions that can take a list or a dict
as an argument only need their argument to be somehow "list-like" or
"dict-like". A specific meaning of "list-like" or "dict-like" (or
something-else-like) is called a "duck type", and several duck types
that are common in idiomatic Python are standardized.
.. code-block:: python
from collections.abc import Mapping, MutableMapping, Sequence, Iterable
# or 'from typing import ...' (required in Python 3.8)
# Use Iterable for generic iterables (anything usable in "for"),
# and Sequence where a sequence (supporting "len" and "__getitem__") is
# required
deff(ints: Iterable[int]) -> list[str]:
return [str(x) for x in ints]
f(range(1, 3))
# Mapping describes a dict-like object (with "__getitem__") that we won't
# mutate, and MutableMapping one (with "__setitem__") that we might
deff(my_mapping: Mapping[int, str]) -> list[int]:
my_mapping[5] ='maybe'# mypy will complain about this line...
returnlist(my_mapping.keys())
f({3: 'yes', 4: 'no'})
deff(my_mapping: MutableMapping[int, str]) -> set[str]:
my_mapping[5] ='maybe'# ...but mypy is OK with this.
returnset(my_mapping.values())
f({3: 'yes', 4: 'no'})
import sys
from typing importIO
# Use IO[str] or IO[bytes] for functions that should accept or return
# objects that come from an open() call (note that IO does not
# distinguish between reading, writing or other modes)
defget_sys_IO(mode: str='w') -> IO[str]:
if mode =='w':
return sys.stdout
elif mode =='r':
return sys.stdin
else:
return sys.stdout
You can even make your own duck types using :ref:`protocol-types`.
Forward references
******************
.. code-block:: python
# You may want to reference a class before it is defined.
# This is known as a "forward reference".
deff(foo: A) -> int: # This will fail at runtime with 'A' is not defined
...
# However, if you add the following special import:
from__future__import annotations
# It will work at runtime and type checking will succeed as long as there
# is a class of that name later on in the file
deff(foo: A) -> int: # Ok
...
# Another option is to just put the type in quotes
deff(foo: 'A') -> int: # Also ok
...
classA:
# This can also come up if you need to reference a class in a type
# annotation inside the definition of that class
@classmethod
defcreate(cls) -> A:
...
See :ref:`forward-references` for more details.
Decorators
**********
Decorator functions can be expressed via generics. See
:ref:`declaring-decorators` for more details. Example using Python 3.12
syntax:
.. code-block:: python
from collections.abc import Callable
from typing import Any
def bare_decorator[F: Callable[..., Any]](func: F) -> F:
...
def decorator_args[F: Callable[..., Any]](url: str) -> Callable[[F], F]:
...
The same example using pre-3.12 syntax:
.. code-block:: python
from collections.abc import Callable
from typing import Any, TypeVar
F = TypeVar('F', bound=Callable[..., Any])
defbare_decorator(func: F) -> F:
...
defdecorator_args(url: str) -> Callable[[F], F]:
...
Coroutines and asyncio
**********************
See :ref:`async-and-await` for the full detail on typing coroutines and asynchronous code.
.. code-block:: python
import asyncio
# A coroutine is typed like a normal function
asyncdefcountdown(tag: str, count: int) -> str:
while count >0:
print(f'T-minus {count} ({tag})')
await asyncio.sleep(0.1)
count -=1
return"Blastoff!"