- Notifications
You must be signed in to change notification settings - Fork 31.7k
/
Copy pathprocess.py
699 lines (601 loc) · 27.4 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
# Copyright 2009 Brian Quinlan. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""Implements ProcessPoolExecutor.
The follow diagram and text describe the data-flow through the system:
|======================= In-process =====================|== Out-of-process ==|
+----------+ +----------+ +--------+ +-----------+ +---------+
| | => | Work Ids | | | | Call Q | | Process |
| | +----------+ | | +-----------+ | Pool |
| | | ... | | | | ... | +---------+
| | | 6 | => | | => | 5, call() | => | |
| | | 7 | | | | ... | | |
| Process | | ... | | Local | +-----------+ | Process |
| Pool | +----------+ | Worker | | #1..n |
| Executor | | Thread | | |
| | +----------- + | | +-----------+ | |
| | <=> | Work Items | <=> | | <= | Result Q | <= | |
| | +------------+ | | +-----------+ | |
| | | 6: call() | | | | ... | | |
| | | future | | | | 4, result | | |
| | | ... | | | | 3, except | | |
+----------+ +------------+ +--------+ +-----------+ +---------+
Executor.submit() called:
- creates a uniquely numbered _WorkItem and adds it to the "Work Items" dict
- adds the id of the _WorkItem to the "Work Ids" queue
Local worker thread:
- reads work ids from the "Work Ids" queue and looks up the corresponding
WorkItem from the "Work Items" dict: if the work item has been cancelled then
it is simply removed from the dict, otherwise it is repackaged as a
_CallItem and put in the "Call Q". New _CallItems are put in the "Call Q"
until "Call Q" is full. NOTE: the size of the "Call Q" is kept small because
calls placed in the "Call Q" can no longer be cancelled with Future.cancel().
- reads _ResultItems from "Result Q", updates the future stored in the
"Work Items" dict and deletes the dict entry
Process #1..n:
- reads _CallItems from "Call Q", executes the calls, and puts the resulting
_ResultItems in "Result Q"
"""
__author__='Brian Quinlan (brian@sweetapp.com)'
importatexit
importos
fromconcurrent.futuresimport_base
importqueue
fromqueueimportFull
importmultiprocessingasmp
frommultiprocessing.connectionimportwait
frommultiprocessing.queuesimportQueue
importthreading
importweakref
fromfunctoolsimportpartial
importitertools
importsys
importtraceback
# Workers are created as daemon threads and processes. This is done to allow the
# interpreter to exit when there are still idle processes in a
# ProcessPoolExecutor's process pool (i.e. shutdown() was not called). However,
# allowing workers to die with the interpreter has two undesirable properties:
# - The workers would still be running during interpreter shutdown,
# meaning that they would fail in unpredictable ways.
# - The workers could be killed while evaluating a work item, which could
# be bad if the callable being evaluated has external side-effects e.g.
# writing to a file.
#
# To work around this problem, an exit handler is installed which tells the
# workers to exit when their work queues are empty and then waits until the
# threads/processes finish.
_threads_wakeups=weakref.WeakKeyDictionary()
_global_shutdown=False
class_ThreadWakeup:
def__init__(self):
self._reader, self._writer=mp.Pipe(duplex=False)
defclose(self):
self._writer.close()
self._reader.close()
defwakeup(self):
self._writer.send_bytes(b"")
defclear(self):
whileself._reader.poll():
self._reader.recv_bytes()
def_python_exit():
global_global_shutdown
_global_shutdown=True
items=list(_threads_wakeups.items())
for_, thread_wakeupinitems:
thread_wakeup.wakeup()
fort, _initems:
t.join()
# Controls how many more calls than processes will be queued in the call queue.
# A smaller number will mean that processes spend more time idle waiting for
# work while a larger number will make Future.cancel() succeed less frequently
# (Futures in the call queue cannot be cancelled).
EXTRA_QUEUED_CALLS=1
# On Windows, WaitForMultipleObjects is used to wait for processes to finish.
# It can wait on, at most, 63 objects. There is an overhead of two objects:
# - the result queue reader
# - the thread wakeup reader
_MAX_WINDOWS_WORKERS=63-2
# Hack to embed stringification of remote traceback in local traceback
class_RemoteTraceback(Exception):
def__init__(self, tb):
self.tb=tb
def__str__(self):
returnself.tb
class_ExceptionWithTraceback:
def__init__(self, exc, tb):
tb=traceback.format_exception(type(exc), exc, tb)
tb=''.join(tb)
self.exc=exc
self.tb='\n"""\n%s"""'%tb
def__reduce__(self):
return_rebuild_exc, (self.exc, self.tb)
def_rebuild_exc(exc, tb):
exc.__cause__=_RemoteTraceback(tb)
returnexc
class_WorkItem(object):
def__init__(self, future, fn, args, kwargs):
self.future=future
self.fn=fn
self.args=args
self.kwargs=kwargs
class_ResultItem(object):
def__init__(self, work_id, exception=None, result=None):
self.work_id=work_id
self.exception=exception
self.result=result
class_CallItem(object):
def__init__(self, work_id, fn, args, kwargs):
self.work_id=work_id
self.fn=fn
self.args=args
self.kwargs=kwargs
class_SafeQueue(Queue):
"""Safe Queue set exception to the future object linked to a job"""
def__init__(self, max_size=0, *, ctx, pending_work_items):
self.pending_work_items=pending_work_items
super().__init__(max_size, ctx=ctx)
def_on_queue_feeder_error(self, e, obj):
ifisinstance(obj, _CallItem):
tb=traceback.format_exception(type(e), e, e.__traceback__)
e.__cause__=_RemoteTraceback('\n"""\n{}"""'.format(''.join(tb)))
work_item=self.pending_work_items.pop(obj.work_id, None)
# work_item can be None if another process terminated. In this case,
# the queue_manager_thread fails all work_items with BrokenProcessPool
ifwork_itemisnotNone:
work_item.future.set_exception(e)
else:
super()._on_queue_feeder_error(e, obj)
def_get_chunks(*iterables, chunksize):
""" Iterates over zip()ed iterables in chunks. """
it=zip(*iterables)
whileTrue:
chunk=tuple(itertools.islice(it, chunksize))
ifnotchunk:
return
yieldchunk
def_process_chunk(fn, chunk):
""" Processes a chunk of an iterable passed to map.
Runs the function passed to map() on a chunk of the
iterable passed to map.
This function is run in a separate process.
"""
return [fn(*args) forargsinchunk]
def_sendback_result(result_queue, work_id, result=None, exception=None):
"""Safely send back the given result or exception"""
try:
result_queue.put(_ResultItem(work_id, result=result,
exception=exception))
exceptBaseExceptionase:
exc=_ExceptionWithTraceback(e, e.__traceback__)
result_queue.put(_ResultItem(work_id, exception=exc))
def_process_worker(call_queue, result_queue, initializer, initargs):
"""Evaluates calls from call_queue and places the results in result_queue.
This worker is run in a separate process.
Args:
call_queue: A ctx.Queue of _CallItems that will be read and
evaluated by the worker.
result_queue: A ctx.Queue of _ResultItems that will written
to by the worker.
initializer: A callable initializer, or None
initargs: A tuple of args for the initializer
"""
ifinitializerisnotNone:
try:
initializer(*initargs)
exceptBaseException:
_base.LOGGER.critical('Exception in initializer:', exc_info=True)
# The parent will notice that the process stopped and
# mark the pool broken
return
whileTrue:
call_item=call_queue.get(block=True)
ifcall_itemisNone:
# Wake up queue management thread
result_queue.put(os.getpid())
return
try:
r=call_item.fn(*call_item.args, **call_item.kwargs)
exceptBaseExceptionase:
exc=_ExceptionWithTraceback(e, e.__traceback__)
_sendback_result(result_queue, call_item.work_id, exception=exc)
else:
_sendback_result(result_queue, call_item.work_id, result=r)
# Liberate the resource as soon as possible, to avoid holding onto
# open files or shared memory that is not needed anymore
delcall_item
def_add_call_item_to_queue(pending_work_items,
work_ids,
call_queue):
"""Fills call_queue with _WorkItems from pending_work_items.
This function never blocks.
Args:
pending_work_items: A dict mapping work ids to _WorkItems e.g.
{5: <_WorkItem...>, 6: <_WorkItem...>, ...}
work_ids: A queue.Queue of work ids e.g. Queue([5, 6, ...]). Work ids
are consumed and the corresponding _WorkItems from
pending_work_items are transformed into _CallItems and put in
call_queue.
call_queue: A multiprocessing.Queue that will be filled with _CallItems
derived from _WorkItems.
"""
whileTrue:
ifcall_queue.full():
return
try:
work_id=work_ids.get(block=False)
exceptqueue.Empty:
return
else:
work_item=pending_work_items[work_id]
ifwork_item.future.set_running_or_notify_cancel():
call_queue.put(_CallItem(work_id,
work_item.fn,
work_item.args,
work_item.kwargs),
block=True)
else:
delpending_work_items[work_id]
continue
def_queue_management_worker(executor_reference,
processes,
pending_work_items,
work_ids_queue,
call_queue,
result_queue,
thread_wakeup):
"""Manages the communication between this process and the worker processes.
This function is run in a local thread.
Args:
executor_reference: A weakref.ref to the ProcessPoolExecutor that owns
this thread. Used to determine if the ProcessPoolExecutor has been
garbage collected and that this function can exit.
process: A list of the ctx.Process instances used as
workers.
pending_work_items: A dict mapping work ids to _WorkItems e.g.
{5: <_WorkItem...>, 6: <_WorkItem...>, ...}
work_ids_queue: A queue.Queue of work ids e.g. Queue([5, 6, ...]).
call_queue: A ctx.Queue that will be filled with _CallItems
derived from _WorkItems for processing by the process workers.
result_queue: A ctx.SimpleQueue of _ResultItems generated by the
process workers.
thread_wakeup: A _ThreadWakeup to allow waking up the
queue_manager_thread from the main Thread and avoid deadlocks
caused by permanently locked queues.
"""
executor=None
defshutting_down():
return (_global_shutdownorexecutorisNone
orexecutor._shutdown_thread)
defshutdown_worker():
# This is an upper bound on the number of children alive.
n_children_alive=sum(p.is_alive() forpinprocesses.values())
n_children_to_stop=n_children_alive
n_sentinels_sent=0
# Send the right number of sentinels, to make sure all children are
# properly terminated.
whilen_sentinels_sent<n_children_to_stopandn_children_alive>0:
foriinrange(n_children_to_stop-n_sentinels_sent):
try:
call_queue.put_nowait(None)
n_sentinels_sent+=1
exceptFull:
break
n_children_alive=sum(p.is_alive() forpinprocesses.values())
# Release the queue's resources as soon as possible.
call_queue.close()
# If .join() is not called on the created processes then
# some ctx.Queue methods may deadlock on Mac OS X.
forpinprocesses.values():
p.join()
result_reader=result_queue._reader
wakeup_reader=thread_wakeup._reader
readers= [result_reader, wakeup_reader]
whileTrue:
_add_call_item_to_queue(pending_work_items,
work_ids_queue,
call_queue)
# Wait for a result to be ready in the result_queue while checking
# that all worker processes are still running, or for a wake up
# signal send. The wake up signals come either from new tasks being
# submitted, from the executor being shutdown/gc-ed, or from the
# shutdown of the python interpreter.
worker_sentinels= [p.sentinelforpinprocesses.values()]
ready=wait(readers+worker_sentinels)
cause=None
is_broken=True
ifresult_readerinready:
try:
result_item=result_reader.recv()
is_broken=False
exceptBaseExceptionase:
cause=traceback.format_exception(type(e), e, e.__traceback__)
elifwakeup_readerinready:
is_broken=False
result_item=None
thread_wakeup.clear()
ifis_broken:
# Mark the process pool broken so that submits fail right now.
executor=executor_reference()
ifexecutorisnotNone:
executor._broken= ('A child process terminated '
'abruptly, the process pool is not '
'usable anymore')
executor._shutdown_thread=True
executor=None
bpe=BrokenProcessPool("A process in the process pool was "
"terminated abruptly while the future was "
"running or pending.")
ifcauseisnotNone:
bpe.__cause__=_RemoteTraceback(
f"\n'''\n{''.join(cause)}'''")
# All futures in flight must be marked failed
forwork_id, work_iteminpending_work_items.items():
work_item.future.set_exception(bpe)
# Delete references to object. See issue16284
delwork_item
pending_work_items.clear()
# Terminate remaining workers forcibly: the queues or their
# locks may be in a dirty state and block forever.
forpinprocesses.values():
p.terminate()
shutdown_worker()
return
ifisinstance(result_item, int):
# Clean shutdown of a worker using its PID
# (avoids marking the executor broken)
assertshutting_down()
p=processes.pop(result_item)
p.join()
ifnotprocesses:
shutdown_worker()
return
elifresult_itemisnotNone:
work_item=pending_work_items.pop(result_item.work_id, None)
# work_item can be None if another process terminated (see above)
ifwork_itemisnotNone:
ifresult_item.exception:
work_item.future.set_exception(result_item.exception)
else:
work_item.future.set_result(result_item.result)
# Delete references to object. See issue16284
delwork_item
# Delete reference to result_item
delresult_item
# Check whether we should start shutting down.
executor=executor_reference()
# No more work items can be added if:
# - The interpreter is shutting down OR
# - The executor that owns this worker has been collected OR
# - The executor that owns this worker has been shutdown.
ifshutting_down():
try:
# Flag the executor as shutting down as early as possible if it
# is not gc-ed yet.
ifexecutorisnotNone:
executor._shutdown_thread=True
# Since no new work items can be added, it is safe to shutdown
# this thread if there are no pending work items.
ifnotpending_work_items:
shutdown_worker()
return
exceptFull:
# This is not a problem: we will eventually be woken up (in
# result_queue.get()) and be able to send a sentinel again.
pass
executor=None
_system_limits_checked=False
_system_limited=None
def_check_system_limits():
global_system_limits_checked, _system_limited
if_system_limits_checked:
if_system_limited:
raiseNotImplementedError(_system_limited)
_system_limits_checked=True
try:
nsems_max=os.sysconf("SC_SEM_NSEMS_MAX")
except (AttributeError, ValueError):
# sysconf not available or setting not available
return
ifnsems_max==-1:
# indetermined limit, assume that limit is determined
# by available memory only
return
ifnsems_max>=256:
# minimum number of semaphores available
# according to POSIX
return
_system_limited= ("system provides too few semaphores (%d"
" available, 256 necessary)"%nsems_max)
raiseNotImplementedError(_system_limited)
def_chain_from_iterable_of_lists(iterable):
"""
Specialized implementation of itertools.chain.from_iterable.
Each item in *iterable* should be a list. This function is
careful not to keep references to yielded objects.
"""
forelementiniterable:
element.reverse()
whileelement:
yieldelement.pop()
classBrokenProcessPool(_base.BrokenExecutor):
"""
Raised when a process in a ProcessPoolExecutor terminated abruptly
while a future was in the running state.
"""
classProcessPoolExecutor(_base.Executor):
def__init__(self, max_workers=None, mp_context=None,
initializer=None, initargs=()):
"""Initializes a new ProcessPoolExecutor instance.
Args:
max_workers: The maximum number of processes that can be used to
execute the given calls. If None or not given then as many
worker processes will be created as the machine has processors.
mp_context: A multiprocessing context to launch the workers. This
object should provide SimpleQueue, Queue and Process.
initializer: A callable used to initialize worker processes.
initargs: A tuple of arguments to pass to the initializer.
"""
_check_system_limits()
ifmax_workersisNone:
self._max_workers=os.cpu_count() or1
ifsys.platform=='win32':
self._max_workers=min(_MAX_WINDOWS_WORKERS,
self._max_workers)
else:
ifmax_workers<=0:
raiseValueError("max_workers must be greater than 0")
elif (sys.platform=='win32'and
max_workers>_MAX_WINDOWS_WORKERS):
raiseValueError(
f"max_workers must be <= {_MAX_WINDOWS_WORKERS}")
self._max_workers=max_workers
ifmp_contextisNone:
mp_context=mp.get_context()
self._mp_context=mp_context
ifinitializerisnotNoneandnotcallable(initializer):
raiseTypeError("initializer must be a callable")
self._initializer=initializer
self._initargs=initargs
# Management thread
self._queue_management_thread=None
# Map of pids to processes
self._processes= {}
# Shutdown is a two-step process.
self._shutdown_thread=False
self._shutdown_lock=threading.Lock()
self._broken=False
self._queue_count=0
self._pending_work_items= {}
# Create communication channels for the executor
# Make the call queue slightly larger than the number of processes to
# prevent the worker processes from idling. But don't make it too big
# because futures in the call queue cannot be cancelled.
queue_size=self._max_workers+EXTRA_QUEUED_CALLS
self._call_queue=_SafeQueue(
max_size=queue_size, ctx=self._mp_context,
pending_work_items=self._pending_work_items)
# Killed worker processes can produce spurious "broken pipe"
# tracebacks in the queue's own worker thread. But we detect killed
# processes anyway, so silence the tracebacks.
self._call_queue._ignore_epipe=True
self._result_queue=mp_context.SimpleQueue()
self._work_ids=queue.Queue()
# _ThreadWakeup is a communication channel used to interrupt the wait
# of the main loop of queue_manager_thread from another thread (e.g.
# when calling executor.submit or executor.shutdown). We do not use the
# _result_queue to send the wakeup signal to the queue_manager_thread
# as it could result in a deadlock if a worker process dies with the
# _result_queue write lock still acquired.
self._queue_management_thread_wakeup=_ThreadWakeup()
def_start_queue_management_thread(self):
ifself._queue_management_threadisNone:
# When the executor gets garbarge collected, the weakref callback
# will wake up the queue management thread so that it can terminate
# if there is no pending work item.
defweakref_cb(_,
thread_wakeup=self._queue_management_thread_wakeup):
mp.util.debug('Executor collected: triggering callback for'
' QueueManager wakeup')
thread_wakeup.wakeup()
# Start the processes so that their sentinels are known.
self._adjust_process_count()
self._queue_management_thread=threading.Thread(
target=_queue_management_worker,
args=(weakref.ref(self, weakref_cb),
self._processes,
self._pending_work_items,
self._work_ids,
self._call_queue,
self._result_queue,
self._queue_management_thread_wakeup),
name="QueueManagerThread")
self._queue_management_thread.daemon=True
self._queue_management_thread.start()
_threads_wakeups[self._queue_management_thread] = \
self._queue_management_thread_wakeup
def_adjust_process_count(self):
for_inrange(len(self._processes), self._max_workers):
p=self._mp_context.Process(
target=_process_worker,
args=(self._call_queue,
self._result_queue,
self._initializer,
self._initargs))
p.start()
self._processes[p.pid] =p
defsubmit(*args, **kwargs):
iflen(args) >=2:
self, fn, *args=args
elifnotargs:
raiseTypeError("descriptor 'submit' of 'ProcessPoolExecutor' object "
"needs an argument")
elif'fn'inkwargs:
fn=kwargs.pop('fn')
self, *args=args
else:
raiseTypeError('submit expected at least 1 positional argument, '
'got %d'% (len(args)-1))
withself._shutdown_lock:
ifself._broken:
raiseBrokenProcessPool(self._broken)
ifself._shutdown_thread:
raiseRuntimeError('cannot schedule new futures after shutdown')
if_global_shutdown:
raiseRuntimeError('cannot schedule new futures after '
'interpreter shutdown')
f=_base.Future()
w=_WorkItem(f, fn, args, kwargs)
self._pending_work_items[self._queue_count] =w
self._work_ids.put(self._queue_count)
self._queue_count+=1
# Wake up queue management thread
self._queue_management_thread_wakeup.wakeup()
self._start_queue_management_thread()
returnf
submit.__doc__=_base.Executor.submit.__doc__
defmap(self, fn, *iterables, timeout=None, chunksize=1):
"""Returns an iterator equivalent to map(fn, iter).
Args:
fn: A callable that will take as many arguments as there are
passed iterables.
timeout: The maximum number of seconds to wait. If None, then there
is no limit on the wait time.
chunksize: If greater than one, the iterables will be chopped into
chunks of size chunksize and submitted to the process pool.
If set to one, the items in the list will be sent one at a time.
Returns:
An iterator equivalent to: map(func, *iterables) but the calls may
be evaluated out-of-order.
Raises:
TimeoutError: If the entire result iterator could not be generated
before the given timeout.
Exception: If fn(*args) raises for any values.
"""
ifchunksize<1:
raiseValueError("chunksize must be >= 1.")
results=super().map(partial(_process_chunk, fn),
_get_chunks(*iterables, chunksize=chunksize),
timeout=timeout)
return_chain_from_iterable_of_lists(results)
defshutdown(self, wait=True):
withself._shutdown_lock:
self._shutdown_thread=True
ifself._queue_management_thread:
# Wake up queue management thread
self._queue_management_thread_wakeup.wakeup()
ifwait:
self._queue_management_thread.join()
# To reduce the risk of opening too many files, remove references to
# objects that use file descriptors.
self._queue_management_thread=None
ifself._call_queueisnotNone:
self._call_queue.close()
ifwait:
self._call_queue.join_thread()
self._call_queue=None
self._result_queue=None
self._processes=None
ifself._queue_management_thread_wakeup:
self._queue_management_thread_wakeup.close()
self._queue_management_thread_wakeup=None
shutdown.__doc__=_base.Executor.shutdown.__doc__
atexit.register(_python_exit)