- Notifications
You must be signed in to change notification settings - Fork 31.7k
/
Copy pathfunctools.py
1037 lines (877 loc) · 38.2 KB
/
functools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""functools.py - Tools for working with functions and callable objects
"""
# Python module wrapper for _functools C module
# to allow utilities written in Python to be added
# to the functools module.
# Written by Nick Coghlan <ncoghlan at gmail.com>,
# Raymond Hettinger <python at rcn.com>,
# and Łukasz Langa <lukasz at langa.pl>.
# Copyright (C) 2006-2013 Python Software Foundation.
# See C source code for _functools credits/copyright
__all__= ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
'total_ordering', 'cache', 'cmp_to_key', 'lru_cache', 'reduce',
'partial', 'partialmethod', 'singledispatch', 'singledispatchmethod',
'cached_property']
fromabcimportget_cache_token
fromcollectionsimportnamedtuple
# import types, weakref # Deferred to single_dispatch()
fromreprlibimportrecursive_repr
from_threadimportRLock
# Avoid importing types, so we can speedup import time
GenericAlias=type(list[int])
################################################################################
### update_wrapper() and wraps() decorator
################################################################################
# update_wrapper() and wraps() are tools to help write
# wrapper functions that can handle naive introspection
WRAPPER_ASSIGNMENTS= ('__module__', '__name__', '__qualname__', '__doc__',
'__annotations__', '__type_params__')
WRAPPER_UPDATES= ('__dict__',)
defupdate_wrapper(wrapper,
wrapped,
assigned=WRAPPER_ASSIGNMENTS,
updated=WRAPPER_UPDATES):
"""Update a wrapper function to look like the wrapped function
wrapper is the function to be updated
wrapped is the original function
assigned is a tuple naming the attributes assigned directly
from the wrapped function to the wrapper function (defaults to
functools.WRAPPER_ASSIGNMENTS)
updated is a tuple naming the attributes of the wrapper that
are updated with the corresponding attribute from the wrapped
function (defaults to functools.WRAPPER_UPDATES)
"""
forattrinassigned:
try:
value=getattr(wrapped, attr)
exceptAttributeError:
pass
else:
setattr(wrapper, attr, value)
forattrinupdated:
getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
# Issue #17482: set __wrapped__ last so we don't inadvertently copy it
# from the wrapped function when updating __dict__
wrapper.__wrapped__=wrapped
# Return the wrapper so this can be used as a decorator via partial()
returnwrapper
defwraps(wrapped,
assigned=WRAPPER_ASSIGNMENTS,
updated=WRAPPER_UPDATES):
"""Decorator factory to apply update_wrapper() to a wrapper function
Returns a decorator that invokes update_wrapper() with the decorated
function as the wrapper argument and the arguments to wraps() as the
remaining arguments. Default arguments are as for update_wrapper().
This is a convenience function to simplify applying partial() to
update_wrapper().
"""
returnpartial(update_wrapper, wrapped=wrapped,
assigned=assigned, updated=updated)
################################################################################
### total_ordering class decorator
################################################################################
# The total ordering functions all invoke the root magic method directly
# rather than using the corresponding operator. This avoids possible
# infinite recursion that could occur when the operator dispatch logic
# detects a NotImplemented result and then calls a reflected method.
def_gt_from_lt(self, other):
'Return a > b. Computed by @total_ordering from (not a < b) and (a != b).'
op_result=type(self).__lt__(self, other)
ifop_resultisNotImplemented:
returnop_result
returnnotop_resultandself!=other
def_le_from_lt(self, other):
'Return a <= b. Computed by @total_ordering from (a < b) or (a == b).'
op_result=type(self).__lt__(self, other)
ifop_resultisNotImplemented:
returnop_result
returnop_resultorself==other
def_ge_from_lt(self, other):
'Return a >= b. Computed by @total_ordering from (not a < b).'
op_result=type(self).__lt__(self, other)
ifop_resultisNotImplemented:
returnop_result
returnnotop_result
def_ge_from_le(self, other):
'Return a >= b. Computed by @total_ordering from (not a <= b) or (a == b).'
op_result=type(self).__le__(self, other)
ifop_resultisNotImplemented:
returnop_result
returnnotop_resultorself==other
def_lt_from_le(self, other):
'Return a < b. Computed by @total_ordering from (a <= b) and (a != b).'
op_result=type(self).__le__(self, other)
ifop_resultisNotImplemented:
returnop_result
returnop_resultandself!=other
def_gt_from_le(self, other):
'Return a > b. Computed by @total_ordering from (not a <= b).'
op_result=type(self).__le__(self, other)
ifop_resultisNotImplemented:
returnop_result
returnnotop_result
def_lt_from_gt(self, other):
'Return a < b. Computed by @total_ordering from (not a > b) and (a != b).'
op_result=type(self).__gt__(self, other)
ifop_resultisNotImplemented:
returnop_result
returnnotop_resultandself!=other
def_ge_from_gt(self, other):
'Return a >= b. Computed by @total_ordering from (a > b) or (a == b).'
op_result=type(self).__gt__(self, other)
ifop_resultisNotImplemented:
returnop_result
returnop_resultorself==other
def_le_from_gt(self, other):
'Return a <= b. Computed by @total_ordering from (not a > b).'
op_result=type(self).__gt__(self, other)
ifop_resultisNotImplemented:
returnop_result
returnnotop_result
def_le_from_ge(self, other):
'Return a <= b. Computed by @total_ordering from (not a >= b) or (a == b).'
op_result=type(self).__ge__(self, other)
ifop_resultisNotImplemented:
returnop_result
returnnotop_resultorself==other
def_gt_from_ge(self, other):
'Return a > b. Computed by @total_ordering from (a >= b) and (a != b).'
op_result=type(self).__ge__(self, other)
ifop_resultisNotImplemented:
returnop_result
returnop_resultandself!=other
def_lt_from_ge(self, other):
'Return a < b. Computed by @total_ordering from (not a >= b).'
op_result=type(self).__ge__(self, other)
ifop_resultisNotImplemented:
returnop_result
returnnotop_result
_convert= {
'__lt__': [('__gt__', _gt_from_lt),
('__le__', _le_from_lt),
('__ge__', _ge_from_lt)],
'__le__': [('__ge__', _ge_from_le),
('__lt__', _lt_from_le),
('__gt__', _gt_from_le)],
'__gt__': [('__lt__', _lt_from_gt),
('__ge__', _ge_from_gt),
('__le__', _le_from_gt)],
'__ge__': [('__le__', _le_from_ge),
('__gt__', _gt_from_ge),
('__lt__', _lt_from_ge)]
}
deftotal_ordering(cls):
"""Class decorator that fills in missing ordering methods"""
# Find user-defined comparisons (not those inherited from object).
roots= {opforopin_convertifgetattr(cls, op, None) isnotgetattr(object, op, None)}
ifnotroots:
raiseValueError('must define at least one ordering operation: < > <= >=')
root=max(roots) # prefer __lt__ to __le__ to __gt__ to __ge__
foropname, opfuncin_convert[root]:
ifopnamenotinroots:
opfunc.__name__=opname
setattr(cls, opname, opfunc)
returncls
################################################################################
### cmp_to_key() function converter
################################################################################
defcmp_to_key(mycmp):
"""Convert a cmp= function into a key= function"""
classK(object):
__slots__= ['obj']
def__init__(self, obj):
self.obj=obj
def__lt__(self, other):
returnmycmp(self.obj, other.obj) <0
def__gt__(self, other):
returnmycmp(self.obj, other.obj) >0
def__eq__(self, other):
returnmycmp(self.obj, other.obj) ==0
def__le__(self, other):
returnmycmp(self.obj, other.obj) <=0
def__ge__(self, other):
returnmycmp(self.obj, other.obj) >=0
__hash__=None
returnK
try:
from_functoolsimportcmp_to_key
exceptImportError:
pass
################################################################################
### reduce() sequence to a single item
################################################################################
_initial_missing=object()
defreduce(function, sequence, initial=_initial_missing):
"""
reduce(function, iterable[, initial], /) -> value
Apply a function of two arguments cumulatively to the items of an iterable, from left to right.
This effectively reduces the iterable to a single value. If initial is present,
it is placed before the items of the iterable in the calculation, and serves as
a default when the iterable is empty.
For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculates ((((1 + 2) + 3) + 4) + 5).
"""
it=iter(sequence)
ifinitialis_initial_missing:
try:
value=next(it)
exceptStopIteration:
raiseTypeError(
"reduce() of empty iterable with no initial value") fromNone
else:
value=initial
forelementinit:
value=function(value, element)
returnvalue
try:
from_functoolsimportreduce
exceptImportError:
pass
################################################################################
### partial() argument application
################################################################################
# Purely functional, no descriptor behaviour
classpartial:
"""New function with partial application of the given arguments
and keywords.
"""
__slots__="func", "args", "keywords", "__dict__", "__weakref__"
def__new__(cls, func, /, *args, **keywords):
ifnotcallable(func):
raiseTypeError("the first argument must be callable")
ifisinstance(func, partial):
args=func.args+args
keywords= {**func.keywords, **keywords}
func=func.func
self=super(partial, cls).__new__(cls)
self.func=func
self.args=args
self.keywords=keywords
returnself
def__call__(self, /, *args, **keywords):
keywords= {**self.keywords, **keywords}
returnself.func(*self.args, *args, **keywords)
@recursive_repr()
def__repr__(self):
cls=type(self)
qualname=cls.__qualname__
module=cls.__module__
args= [repr(self.func)]
args.extend(repr(x) forxinself.args)
args.extend(f"{k}={v!r}"for (k, v) inself.keywords.items())
returnf"{module}.{qualname}({', '.join(args)})"
def__get__(self, obj, objtype=None):
ifobjisNone:
returnself
importwarnings
warnings.warn('functools.partial will be a method descriptor in '
'future Python versions; wrap it in staticmethod() '
'if you want to preserve the old behavior',
FutureWarning, 2)
returnself
def__reduce__(self):
returntype(self), (self.func,), (self.func, self.args,
self.keywordsorNone, self.__dict__orNone)
def__setstate__(self, state):
ifnotisinstance(state, tuple):
raiseTypeError("argument to __setstate__ must be a tuple")
iflen(state) !=4:
raiseTypeError(f"expected 4 items in state, got {len(state)}")
func, args, kwds, namespace=state
if (notcallable(func) ornotisinstance(args, tuple) or
(kwdsisnotNoneandnotisinstance(kwds, dict)) or
(namespaceisnotNoneandnotisinstance(namespace, dict))):
raiseTypeError("invalid partial state")
args=tuple(args) # just in case it's a subclass
ifkwdsisNone:
kwds= {}
eliftype(kwds) isnotdict: # XXX does it need to be *exactly* dict?
kwds=dict(kwds)
ifnamespaceisNone:
namespace= {}
self.__dict__=namespace
self.func=func
self.args=args
self.keywords=kwds
__class_getitem__=classmethod(GenericAlias)
try:
from_functoolsimportpartial
exceptImportError:
pass
# Descriptor version
classpartialmethod(object):
"""Method descriptor with partial application of the given arguments
and keywords.
Supports wrapping existing descriptors and handles non-descriptor
callables as instance methods.
"""
def__init__(self, func, /, *args, **keywords):
ifnotcallable(func) andnothasattr(func, "__get__"):
raiseTypeError("{!r} is not callable or a descriptor"
.format(func))
# func could be a descriptor like classmethod which isn't callable,
# so we can't inherit from partial (it verifies func is callable)
ifisinstance(func, partialmethod):
# flattening is mandatory in order to place cls/self before all
# other arguments
# it's also more efficient since only one function will be called
self.func=func.func
self.args=func.args+args
self.keywords= {**func.keywords, **keywords}
else:
self.func=func
self.args=args
self.keywords=keywords
def__repr__(self):
cls=type(self)
module=cls.__module__
qualname=cls.__qualname__
args= [repr(self.func)]
args.extend(map(repr, self.args))
args.extend(f"{k}={v!r}"fork, vinself.keywords.items())
returnf"{module}.{qualname}({', '.join(args)})"
def_make_unbound_method(self):
def_method(cls_or_self, /, *args, **keywords):
keywords= {**self.keywords, **keywords}
returnself.func(cls_or_self, *self.args, *args, **keywords)
_method.__isabstractmethod__=self.__isabstractmethod__
_method.__partialmethod__=self
return_method
def__get__(self, obj, cls=None):
get=getattr(self.func, "__get__", None)
result=None
ifgetisnotNoneandnotisinstance(self.func, partial):
new_func=get(obj, cls)
ifnew_funcisnotself.func:
# Assume __get__ returning something new indicates the
# creation of an appropriate callable
result=partial(new_func, *self.args, **self.keywords)
try:
result.__self__=new_func.__self__
exceptAttributeError:
pass
ifresultisNone:
# If the underlying descriptor didn't do anything, treat this
# like an instance method
result=self._make_unbound_method().__get__(obj, cls)
returnresult
@property
def__isabstractmethod__(self):
returngetattr(self.func, "__isabstractmethod__", False)
__class_getitem__=classmethod(GenericAlias)
# Helper functions
def_unwrap_partial(func):
whileisinstance(func, partial):
func=func.func
returnfunc
def_unwrap_partialmethod(func):
prev=None
whilefuncisnotprev:
prev=func
whileisinstance(getattr(func, "__partialmethod__", None), partialmethod):
func=func.__partialmethod__
whileisinstance(func, partialmethod):
func=getattr(func, 'func')
func=_unwrap_partial(func)
returnfunc
################################################################################
### LRU Cache function decorator
################################################################################
_CacheInfo=namedtuple("CacheInfo", ["hits", "misses", "maxsize", "currsize"])
class_HashedSeq(list):
""" This class guarantees that hash() will be called no more than once
per element. This is important because the lru_cache() will hash
the key multiple times on a cache miss.
"""
__slots__='hashvalue'
def__init__(self, tup, hash=hash):
self[:] =tup
self.hashvalue=hash(tup)
def__hash__(self):
returnself.hashvalue
def_make_key(args, kwds, typed,
kwd_mark= (object(),),
fasttypes= {int, str},
tuple=tuple, type=type, len=len):
"""Make a cache key from optionally typed positional and keyword arguments
The key is constructed in a way that is flat as possible rather than
as a nested structure that would take more memory.
If there is only a single argument and its data type is known to cache
its hash value, then that argument is returned without a wrapper. This
saves space and improves lookup speed.
"""
# All of code below relies on kwds preserving the order input by the user.
# Formerly, we sorted() the kwds before looping. The new way is *much*
# faster; however, it means that f(x=1, y=2) will now be treated as a
# distinct call from f(y=2, x=1) which will be cached separately.
key=args
ifkwds:
key+=kwd_mark
foriteminkwds.items():
key+=item
iftyped:
key+=tuple(type(v) forvinargs)
ifkwds:
key+=tuple(type(v) forvinkwds.values())
eliflen(key) ==1andtype(key[0]) infasttypes:
returnkey[0]
return_HashedSeq(key)
deflru_cache(maxsize=128, typed=False):
"""Least-recently-used cache decorator.
If *maxsize* is set to None, the LRU features are disabled and the cache
can grow without bound.
If *typed* is True, arguments of different types will be cached separately.
For example, f(decimal.Decimal("3.0")) and f(3.0) will be treated as
distinct calls with distinct results. Some types such as str and int may
be cached separately even when typed is false.
Arguments to the cached function must be hashable.
View the cache statistics named tuple (hits, misses, maxsize, currsize)
with f.cache_info(). Clear the cache and statistics with f.cache_clear().
Access the underlying function with f.__wrapped__.
See: https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)
"""
# Users should only access the lru_cache through its public API:
# cache_info, cache_clear, and f.__wrapped__
# The internals of the lru_cache are encapsulated for thread safety and
# to allow the implementation to change (including a possible C version).
ifisinstance(maxsize, int):
# Negative maxsize is treated as 0
ifmaxsize<0:
maxsize=0
elifcallable(maxsize) andisinstance(typed, bool):
# The user_function was passed in directly via the maxsize argument
user_function, maxsize=maxsize, 128
wrapper=_lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
wrapper.cache_parameters=lambda : {'maxsize': maxsize, 'typed': typed}
returnupdate_wrapper(wrapper, user_function)
elifmaxsizeisnotNone:
raiseTypeError(
'Expected first argument to be an integer, a callable, or None')
defdecorating_function(user_function):
wrapper=_lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
wrapper.cache_parameters=lambda : {'maxsize': maxsize, 'typed': typed}
returnupdate_wrapper(wrapper, user_function)
returndecorating_function
def_lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo):
# Constants shared by all lru cache instances:
sentinel=object() # unique object used to signal cache misses
make_key=_make_key# build a key from the function arguments
PREV, NEXT, KEY, RESULT=0, 1, 2, 3# names for the link fields
cache= {}
hits=misses=0
full=False
cache_get=cache.get# bound method to lookup a key or return None
cache_len=cache.__len__# get cache size without calling len()
lock=RLock() # because linkedlist updates aren't threadsafe
root= [] # root of the circular doubly linked list
root[:] = [root, root, None, None] # initialize by pointing to self
ifmaxsize==0:
defwrapper(*args, **kwds):
# No caching -- just a statistics update
nonlocalmisses
misses+=1
result=user_function(*args, **kwds)
returnresult
elifmaxsizeisNone:
defwrapper(*args, **kwds):
# Simple caching without ordering or size limit
nonlocalhits, misses
key=make_key(args, kwds, typed)
result=cache_get(key, sentinel)
ifresultisnotsentinel:
hits+=1
returnresult
misses+=1
result=user_function(*args, **kwds)
cache[key] =result
returnresult
else:
defwrapper(*args, **kwds):
# Size limited caching that tracks accesses by recency
nonlocalroot, hits, misses, full
key=make_key(args, kwds, typed)
withlock:
link=cache_get(key)
iflinkisnotNone:
# Move the link to the front of the circular queue
link_prev, link_next, _key, result=link
link_prev[NEXT] =link_next
link_next[PREV] =link_prev
last=root[PREV]
last[NEXT] =root[PREV] =link
link[PREV] =last
link[NEXT] =root
hits+=1
returnresult
misses+=1
result=user_function(*args, **kwds)
withlock:
ifkeyincache:
# Getting here means that this same key was added to the
# cache while the lock was released. Since the link
# update is already done, we need only return the
# computed result and update the count of misses.
pass
eliffull:
# Use the old root to store the new key and result.
oldroot=root
oldroot[KEY] =key
oldroot[RESULT] =result
# Empty the oldest link and make it the new root.
# Keep a reference to the old key and old result to
# prevent their ref counts from going to zero during the
# update. That will prevent potentially arbitrary object
# clean-up code (i.e. __del__) from running while we're
# still adjusting the links.
root=oldroot[NEXT]
oldkey=root[KEY]
oldresult=root[RESULT]
root[KEY] =root[RESULT] =None
# Now update the cache dictionary.
delcache[oldkey]
# Save the potentially reentrant cache[key] assignment
# for last, after the root and links have been put in
# a consistent state.
cache[key] =oldroot
else:
# Put result in a new link at the front of the queue.
last=root[PREV]
link= [last, root, key, result]
last[NEXT] =root[PREV] =cache[key] =link
# Use the cache_len bound method instead of the len() function
# which could potentially be wrapped in an lru_cache itself.
full= (cache_len() >=maxsize)
returnresult
defcache_info():
"""Report cache statistics"""
withlock:
return_CacheInfo(hits, misses, maxsize, cache_len())
defcache_clear():
"""Clear the cache and cache statistics"""
nonlocalhits, misses, full
withlock:
cache.clear()
root[:] = [root, root, None, None]
hits=misses=0
full=False
wrapper.cache_info=cache_info
wrapper.cache_clear=cache_clear
returnwrapper
try:
from_functoolsimport_lru_cache_wrapper
exceptImportError:
pass
################################################################################
### cache -- simplified access to the infinity cache
################################################################################
defcache(user_function, /):
'Simple lightweight unbounded cache. Sometimes called "memoize".'
returnlru_cache(maxsize=None)(user_function)
################################################################################
### singledispatch() - single-dispatch generic function decorator
################################################################################
def_c3_merge(sequences):
"""Merges MROs in *sequences* to a single MRO using the C3 algorithm.
Adapted from https://docs.python.org/3/howto/mro.html.
"""
result= []
whileTrue:
sequences= [sforsinsequencesifs] # purge empty sequences
ifnotsequences:
returnresult
fors1insequences: # find merge candidates among seq heads
candidate=s1[0]
fors2insequences:
ifcandidateins2[1:]:
candidate=None
break# reject the current head, it appears later
else:
break
ifcandidateisNone:
raiseRuntimeError("Inconsistent hierarchy")
result.append(candidate)
# remove the chosen candidate
forseqinsequences:
ifseq[0] ==candidate:
delseq[0]
def_c3_mro(cls, abcs=None):
"""Computes the method resolution order using extended C3 linearization.
If no *abcs* are given, the algorithm works exactly like the built-in C3
linearization used for method resolution.
If given, *abcs* is a list of abstract base classes that should be inserted
into the resulting MRO. Unrelated ABCs are ignored and don't end up in the
result. The algorithm inserts ABCs where their functionality is introduced,
i.e. issubclass(cls, abc) returns True for the class itself but returns
False for all its direct base classes. Implicit ABCs for a given class
(either registered or inferred from the presence of a special method like
__len__) are inserted directly after the last ABC explicitly listed in the
MRO of said class. If two implicit ABCs end up next to each other in the
resulting MRO, their ordering depends on the order of types in *abcs*.
"""
fori, baseinenumerate(reversed(cls.__bases__)):
ifhasattr(base, '__abstractmethods__'):
boundary=len(cls.__bases__) -i
break# Bases up to the last explicit ABC are considered first.
else:
boundary=0
abcs=list(abcs) ifabcselse []
explicit_bases=list(cls.__bases__[:boundary])
abstract_bases= []
other_bases=list(cls.__bases__[boundary:])
forbaseinabcs:
ifissubclass(cls, base) andnotany(
issubclass(b, base) forbincls.__bases__
):
# If *cls* is the class that introduces behaviour described by
# an ABC *base*, insert said ABC to its MRO.
abstract_bases.append(base)
forbaseinabstract_bases:
abcs.remove(base)
explicit_c3_mros= [_c3_mro(base, abcs=abcs) forbaseinexplicit_bases]
abstract_c3_mros= [_c3_mro(base, abcs=abcs) forbaseinabstract_bases]
other_c3_mros= [_c3_mro(base, abcs=abcs) forbaseinother_bases]
return_c3_merge(
[[cls]] +
explicit_c3_mros+abstract_c3_mros+other_c3_mros+
[explicit_bases] + [abstract_bases] + [other_bases]
)
def_compose_mro(cls, types):
"""Calculates the method resolution order for a given class *cls*.
Includes relevant abstract base classes (with their respective bases) from
the *types* iterable. Uses a modified C3 linearization algorithm.
"""
bases=set(cls.__mro__)
# Remove entries which are already present in the __mro__ or unrelated.
defis_related(typ):
return (typnotinbasesandhasattr(typ, '__mro__')
andnotisinstance(typ, GenericAlias)
andissubclass(cls, typ))
types= [nfornintypesifis_related(n)]
# Remove entries which are strict bases of other entries (they will end up
# in the MRO anyway.
defis_strict_base(typ):
forotherintypes:
iftyp!=otherandtypinother.__mro__:
returnTrue
returnFalse
types= [nfornintypesifnotis_strict_base(n)]
# Subclasses of the ABCs in *types* which are also implemented by
# *cls* can be used to stabilize ABC ordering.
type_set=set(types)
mro= []
fortypintypes:
found= []
forsubintyp.__subclasses__():
ifsubnotinbasesandissubclass(cls, sub):
found.append([sforsinsub.__mro__ifsintype_set])
ifnotfound:
mro.append(typ)
continue
# Favor subclasses with the biggest number of useful bases
found.sort(key=len, reverse=True)
forsubinfound:
forsubclsinsub:
ifsubclsnotinmro:
mro.append(subcls)
return_c3_mro(cls, abcs=mro)
def_find_impl(cls, registry):
"""Returns the best matching implementation from *registry* for type *cls*.
Where there is no registered implementation for a specific type, its method
resolution order is used to find a more generic implementation.
Note: if *registry* does not contain an implementation for the base
*object* type, this function may return None.
"""
mro=_compose_mro(cls, registry.keys())
match=None
fortinmro:
ifmatchisnotNone:
# If *match* is an implicit ABC but there is another unrelated,
# equally matching implicit ABC, refuse the temptation to guess.
if (tinregistryandtnotincls.__mro__
andmatchnotincls.__mro__
andnotissubclass(match, t)):
raiseRuntimeError("Ambiguous dispatch: {} or {}".format(
match, t))
break
iftinregistry:
match=t
returnregistry.get(match)
defsingledispatch(func):
"""Single-dispatch generic function decorator.
Transforms a function into a generic function, which can have different
behaviours depending upon the type of its first argument. The decorated
function acts as the default implementation, and additional
implementations can be registered using the register() attribute of the
generic function.
"""
# There are many programs that use functools without singledispatch, so we
# trade-off making singledispatch marginally slower for the benefit of
# making start-up of such applications slightly faster.
importtypes, weakref
registry= {}
dispatch_cache=weakref.WeakKeyDictionary()
cache_token=None
defdispatch(cls):
"""generic_func.dispatch(cls) -> <function implementation>
Runs the dispatch algorithm to return the best available implementation
for the given *cls* registered on *generic_func*.
"""
nonlocalcache_token
ifcache_tokenisnotNone:
current_token=get_cache_token()
ifcache_token!=current_token:
dispatch_cache.clear()
cache_token=current_token
try:
impl=dispatch_cache[cls]
exceptKeyError:
try:
impl=registry[cls]
exceptKeyError:
impl=_find_impl(cls, registry)
dispatch_cache[cls] =impl
returnimpl
def_is_union_type(cls):
fromtypingimportget_origin, Union
returnget_origin(cls) in {Union, types.UnionType}
def_is_valid_dispatch_type(cls):
ifisinstance(cls, type):
returnTrue
fromtypingimportget_args
return (_is_union_type(cls) and
all(isinstance(arg, type) forarginget_args(cls)))
defregister(cls, func=None):
"""generic_func.register(cls, func) -> func
Registers a new implementation for the given *cls* on a *generic_func*.
"""
nonlocalcache_token
if_is_valid_dispatch_type(cls):
iffuncisNone:
returnlambdaf: register(cls, f)
else:
iffuncisnotNone:
raiseTypeError(
f"Invalid first argument to `register()`. "
f"{cls!r} is not a class or union type."
)
ann=getattr(cls, '__annotations__', {})
ifnotann:
raiseTypeError(
f"Invalid first argument to `register()`: {cls!r}. "
f"Use either `@register(some_class)` or plain `@register` "
f"on an annotated function."
)
func=cls
# only import typing if annotation parsing is necessary
fromtypingimportget_type_hints
argname, cls=next(iter(get_type_hints(func).items()))
ifnot_is_valid_dispatch_type(cls):
if_is_union_type(cls):
raiseTypeError(
f"Invalid annotation for {argname!r}. "
f"{cls!r} not all arguments are classes."
)
else:
raiseTypeError(
f"Invalid annotation for {argname!r}. "
f"{cls!r} is not a class."
)
if_is_union_type(cls):
fromtypingimportget_args
forarginget_args(cls):
registry[arg] =func
else:
registry[cls] =func
ifcache_tokenisNoneandhasattr(cls, '__abstractmethods__'):
cache_token=get_cache_token()
dispatch_cache.clear()
returnfunc
defwrapper(*args, **kw):
ifnotargs:
raiseTypeError(f'{funcname} requires at least '
'1 positional argument')
returndispatch(args[0].__class__)(*args, **kw)
funcname=getattr(func, '__name__', 'singledispatch function')
registry[object] =func
wrapper.register=register
wrapper.dispatch=dispatch
wrapper.registry=types.MappingProxyType(registry)
wrapper._clear_cache=dispatch_cache.clear
update_wrapper(wrapper, func)
returnwrapper
# Descriptor version
classsingledispatchmethod:
"""Single-dispatch generic method descriptor.
Supports wrapping existing descriptors and handles non-descriptor
callables as instance methods.
"""
def__init__(self, func):
ifnotcallable(func) andnothasattr(func, "__get__"):
raiseTypeError(f"{func!r} is not callable or a descriptor")
self.dispatcher=singledispatch(func)
self.func=func
defregister(self, cls, method=None):
"""generic_method.register(cls, func) -> func
Registers a new implementation for the given *cls* on a *generic_method*.
"""
returnself.dispatcher.register(cls, func=method)
def__get__(self, obj, cls=None):
dispatch=self.dispatcher.dispatch
funcname=getattr(self.func, '__name__', 'singledispatchmethod method')
def_method(*args, **kwargs):
ifnotargs:
raiseTypeError(f'{funcname} requires at least '
'1 positional argument')
returndispatch(args[0].__class__).__get__(obj, cls)(*args, **kwargs)
_method.__isabstractmethod__=self.__isabstractmethod__
_method.register=self.register
update_wrapper(_method, self.func)
return_method
@property
def__isabstractmethod__(self):
returngetattr(self.func, '__isabstractmethod__', False)
################################################################################
### cached_property() - property result cached as instance attribute
################################################################################
_NOT_FOUND=object()
classcached_property:
def__init__(self, func):
self.func=func
self.attrname=None
self.__doc__=func.__doc__
self.__module__=func.__module__