- Notifications
You must be signed in to change notification settings - Fork 31.7k
/
Copy pathcopy.py
306 lines (253 loc) · 8.76 KB
/
copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""Generic (shallow and deep) copying operations.
Interface summary:
import copy
x = copy.copy(y) # make a shallow copy of y
x = copy.deepcopy(y) # make a deep copy of y
x = copy.replace(y, a=1, b=2) # new object with fields replaced, as defined by `__replace__`
For module specific errors, copy.Error is raised.
The difference between shallow and deep copying is only relevant for
compound objects (objects that contain other objects, like lists or
class instances).
- A shallow copy constructs a new compound object and then (to the
extent possible) inserts *the same objects* into it that the
original contains.
- A deep copy constructs a new compound object and then, recursively,
inserts *copies* into it of the objects found in the original.
Two problems often exist with deep copy operations that don't exist
with shallow copy operations:
a) recursive objects (compound objects that, directly or indirectly,
contain a reference to themselves) may cause a recursive loop
b) because deep copy copies *everything* it may copy too much, e.g.
administrative data structures that should be shared even between
copies
Python's deep copy operation avoids these problems by:
a) keeping a table of objects already copied during the current
copying pass
b) letting user-defined classes override the copying operation or the
set of components copied
This version does not copy types like module, class, function, method,
nor stack trace, stack frame, nor file, socket, window, nor any
similar types.
Classes can use the same interfaces to control copying that they use
to control pickling: they can define methods called __getinitargs__(),
__getstate__() and __setstate__(). See the documentation for module
"pickle" for information on these methods.
"""
importtypes
importweakref
fromcopyregimportdispatch_table
classError(Exception):
pass
error=Error# backward compatibility
__all__= ["Error", "copy", "deepcopy", "replace"]
defcopy(x):
"""Shallow copy operation on arbitrary Python objects.
See the module's __doc__ string for more info.
"""
cls=type(x)
copier=_copy_dispatch.get(cls)
ifcopier:
returncopier(x)
ifissubclass(cls, type):
# treat it as a regular class:
return_copy_immutable(x)
copier=getattr(cls, "__copy__", None)
ifcopierisnotNone:
returncopier(x)
reductor=dispatch_table.get(cls)
ifreductorisnotNone:
rv=reductor(x)
else:
reductor=getattr(x, "__reduce_ex__", None)
ifreductorisnotNone:
rv=reductor(4)
else:
reductor=getattr(x, "__reduce__", None)
ifreductor:
rv=reductor()
else:
raiseError("un(shallow)copyable object of type %s"%cls)
ifisinstance(rv, str):
returnx
return_reconstruct(x, None, *rv)
_copy_dispatch=d= {}
def_copy_immutable(x):
returnx
fortin (types.NoneType, int, float, bool, complex, str, tuple,
bytes, frozenset, type, range, slice, property,
types.BuiltinFunctionType, types.EllipsisType,
types.NotImplementedType, types.FunctionType, types.CodeType,
weakref.ref):
d[t] =_copy_immutable
d[list] =list.copy
d[dict] =dict.copy
d[set] =set.copy
d[bytearray] =bytearray.copy
deld, t
defdeepcopy(x, memo=None, _nil=[]):
"""Deep copy operation on arbitrary Python objects.
See the module's __doc__ string for more info.
"""
d=id(x)
ifmemoisNone:
memo= {}
else:
y=memo.get(d, _nil)
ifyisnot_nil:
returny
cls=type(x)
copier=_deepcopy_dispatch.get(cls)
ifcopierisnotNone:
y=copier(x, memo)
else:
ifissubclass(cls, type):
y=_deepcopy_atomic(x, memo)
else:
copier=getattr(x, "__deepcopy__", None)
ifcopierisnotNone:
y=copier(memo)
else:
reductor=dispatch_table.get(cls)
ifreductor:
rv=reductor(x)
else:
reductor=getattr(x, "__reduce_ex__", None)
ifreductorisnotNone:
rv=reductor(4)
else:
reductor=getattr(x, "__reduce__", None)
ifreductor:
rv=reductor()
else:
raiseError(
"un(deep)copyable object of type %s"%cls)
ifisinstance(rv, str):
y=x
else:
y=_reconstruct(x, memo, *rv)
# If is its own copy, don't memoize.
ifyisnotx:
memo[d] =y
_keep_alive(x, memo) # Make sure x lives at least as long as d
returny
_deepcopy_dispatch=d= {}
def_deepcopy_atomic(x, memo):
returnx
d[types.NoneType] =_deepcopy_atomic
d[types.EllipsisType] =_deepcopy_atomic
d[types.NotImplementedType] =_deepcopy_atomic
d[int] =_deepcopy_atomic
d[float] =_deepcopy_atomic
d[bool] =_deepcopy_atomic
d[complex] =_deepcopy_atomic
d[bytes] =_deepcopy_atomic
d[str] =_deepcopy_atomic
d[types.CodeType] =_deepcopy_atomic
d[type] =_deepcopy_atomic
d[range] =_deepcopy_atomic
d[types.BuiltinFunctionType] =_deepcopy_atomic
d[types.FunctionType] =_deepcopy_atomic
d[weakref.ref] =_deepcopy_atomic
d[property] =_deepcopy_atomic
def_deepcopy_list(x, memo, deepcopy=deepcopy):
y= []
memo[id(x)] =y
append=y.append
forainx:
append(deepcopy(a, memo))
returny
d[list] =_deepcopy_list
def_deepcopy_tuple(x, memo, deepcopy=deepcopy):
y= [deepcopy(a, memo) forainx]
# We're not going to put the tuple in the memo, but it's still important we
# check for it, in case the tuple contains recursive mutable structures.
try:
returnmemo[id(x)]
exceptKeyError:
pass
fork, jinzip(x, y):
ifkisnotj:
y=tuple(y)
break
else:
y=x
returny
d[tuple] =_deepcopy_tuple
def_deepcopy_dict(x, memo, deepcopy=deepcopy):
y= {}
memo[id(x)] =y
forkey, valueinx.items():
y[deepcopy(key, memo)] =deepcopy(value, memo)
returny
d[dict] =_deepcopy_dict
def_deepcopy_method(x, memo): # Copy instance methods
returntype(x)(x.__func__, deepcopy(x.__self__, memo))
d[types.MethodType] =_deepcopy_method
deld
def_keep_alive(x, memo):
"""Keeps a reference to the object x in the memo.
Because we remember objects by their id, we have
to assure that possibly temporary objects are kept
alive by referencing them.
We store a reference at the id of the memo, which should
normally not be used unless someone tries to deepcopy
the memo itself...
"""
try:
memo[id(memo)].append(x)
exceptKeyError:
# aha, this is the first one :-)
memo[id(memo)]=[x]
def_reconstruct(x, memo, func, args,
state=None, listiter=None, dictiter=None,
*, deepcopy=deepcopy):
deep=memoisnotNone
ifdeepandargs:
args= (deepcopy(arg, memo) forarginargs)
y=func(*args)
ifdeep:
memo[id(x)] =y
ifstateisnotNone:
ifdeep:
state=deepcopy(state, memo)
ifhasattr(y, '__setstate__'):
y.__setstate__(state)
else:
ifisinstance(state, tuple) andlen(state) ==2:
state, slotstate=state
else:
slotstate=None
ifstateisnotNone:
y.__dict__.update(state)
ifslotstateisnotNone:
forkey, valueinslotstate.items():
setattr(y, key, value)
iflistiterisnotNone:
ifdeep:
foriteminlistiter:
item=deepcopy(item, memo)
y.append(item)
else:
foriteminlistiter:
y.append(item)
ifdictiterisnotNone:
ifdeep:
forkey, valueindictiter:
key=deepcopy(key, memo)
value=deepcopy(value, memo)
y[key] =value
else:
forkey, valueindictiter:
y[key] =value
returny
deltypes, weakref
defreplace(obj, /, **changes):
"""Return a new object replacing specified fields with new values.
This is especially useful for immutable objects, like named tuples or
frozen dataclasses.
"""
cls=obj.__class__
func=getattr(cls, '__replace__', None)
iffuncisNone:
raiseTypeError(f"replace() does not support {cls.__name__} objects")
returnfunc(obj, **changes)