Skip to content

Latest commit

 

History

History
122 lines (94 loc) · 3.99 KB

statistics-charts.md

File metadata and controls

122 lines (94 loc) · 3.99 KB
jupyter
jupytextkernelspecplotly
notebook_metadata_filtertext_representation
all
extensionformat_nameformat_versionjupytext_version
.md
markdown
1.1
1.1.1
display_namelanguagename
Python 2
python
python2
descriptiondisplay_ashas_thumbnaillanguagelayoutnameorderpage_typepermalinkthumbnail
Learn how to plot statistical data with various charts using Python.
statistics
false
python
base
Statistics Charts
5
example_index
python/statistics-charts/
/images/static-image

New to Plotly?

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

Imports

The tutorial below imports NumPy, Pandas, and SciPy.

importplotly.plotlyaspyimportplotly.graph_objsasgofromplotly.toolsimportFigureFactoryasFFimportnumpyasnpimportpandasaspdimportscipy

Import Data

For this example we will use some real data of wind speeds sampled every 10 minutes.

wind_data=pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/wind_speed_laurel_nebraska.csv') df=wind_data[0:10] table=FF.create_table(df) py.iplot(table, filename='wind-data-sample')

Histogram

We will be producing a histogram with the "10 Min Std Dev" column of our data. For more info on the histogram charts, you can checkout the documentation page.

data= [ go.Histogram( x=wind_data['10 Min Std Dev'], histnorm='probability' ) ] py.iplot(data, filename='wind-data-histogram')

Box Plots

We will be producing a box plot with the "10 Min Std Dev" column of our data again. For more info on the histogram charts, you can checkout the documentation page.

data= [ go.Box( y=wind_data['10 Min Std Dev'], ) ] py.iplot(data, filename='wind-data-box-plot')

Scatterplot Matrix

We will be producing a scatterplot matrix with all the columns of our data. For more info on the histogram charts, you can checkout the documentation page.

fig=FF.create_scatterplotmatrix(wind_data, height=1000, width=1000, title='Wind Data - Scatterplot Matrix') py.iplot(fig, filename='wind-data-scatterplot-matrix')
fromIPython.displayimportdisplay, HTMLdisplay(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />')) display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">')) ! pipinstallgit+https://github.com/plotly/publisher.git--upgradeimportpublisherpublisher.publish( 'python-Statistics-Charts.ipynb', 'python/statistics-charts/', 'Statistics Charts | plotly', 'Learn how to plot statistical data with various charts using Python.', title='Statistics Charts in Python. | plotly', name='Statistics Charts', language='python', page_type='example_index', has_thumbnail='false', display_as='statistics', order=5, ipynb='~notebook_demo/116')
close