Skip to content

Latest commit

 

History

History
211 lines (162 loc) · 5.13 KB

linear-algebra.md

File metadata and controls

211 lines (162 loc) · 5.13 KB
jupyter
jupytextkernelspecplotly
notebook_metadata_filtertext_representation
all
extensionformat_nameformat_versionjupytext_version
.md
markdown
1.1
1.1.1
display_namelanguagename
Python 2
python
python2
descriptiondisplay_ashas_thumbnaillanguagelayoutnameorderpage_typepermalinkthumbnail
Learn how to perform several operations on matrices including inverse, eigenvalues, and determinents
mathematics
false
python
base
Linear Algebra
10
example_index
python/linear-algebra/
/images/static-image

New to Plotly?

Plotly's Python library is free and open source! Get started by dowloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

Imports

The tutorial below imports NumPy, Pandas, and SciPy.

importplotly.plotlyaspyimportplotly.graph_objsasgofromplotly.toolsimportFigureFactoryasFFimportnumpyasnpimportpandasaspdimportscipy

Add Two Matrices

A Matrix is a 2D array that stores real or complex numbers. A Real Matrix is one such that all its elements $r$ belong to $\mathbb{R}$. Likewise, a Complex Matrix has entries $c$ in $\mathbb{C}$.

matrix1=np.matrix( [[0, 4], [2, 0]] ) matrix2=np.matrix( [[-1, 2], [1, -2]] ) matrix_sum=matrix1+matrix2colorscale= [[0, '#EAEFC4'], [1, '#9BDF46']] font=['#000000', '#000000'] table=FF.create_annotated_heatmap(matrix_sum.tolist(), colorscale=colorscale, font_colors=font) py.iplot(table, filename='matrix-sum')

Multiply Two Matrices

How to find the product of two matrices

matrix1=np.matrix( [[1, 4], [2, 0]] ) matrix2=np.matrix( [[-1, 2], [1, -2]] ) matrix_prod=matrix1*matrix2colorscale= [[0, '#F1FFD9'], [1, '#8BDBF5']] font=['#000000', '#000000'] table=FF.create_annotated_heatmap(matrix_prod.tolist(), colorscale=colorscale, font_colors=font) py.iplot(table, filename='matrix-prod')

Solve Matrix Equation

How to find the solution of $AX=B$

A=np.matrix( [[1, 4], [2, 0]] ) B=np.matrix( [[-1, 2], [1, -2]] ) X=np.linalg.solve(A, B) colorscale= [[0, '#497285'], [1, '#DFEBED']] font=['#000000', '#000000'] table=FF.create_annotated_heatmap(X.tolist(), colorscale=colorscale, font_colors=font) py.iplot(table, filename='matrix-eq')

Find the Determinant

matrix=np.matrix( [[1, 4], [2, 0]] ) det=np.linalg.det(matrix) det

Find the Inverse

matrix=np.matrix( [[1, 4], [2, 0]] ) inverse=np.linalg.inv(matrix) colorscale= [[0, '#F1FAFB'], [1, '#A0E4F1']] font=['#000000', '#000000'] table=FF.create_annotated_heatmap(inverse.tolist(), colorscale=colorscale, font_colors=font) py.iplot(table, filename='inverse')

Find Eigenvalues

matrix=np.matrix( [[1, 4], [2, 0]] ) eigvals=np.linalg.eigvals(matrix) print("The eignevalues are %f and %f") %(eigvals[0], eigvals[1])

Find SVD

How to find the Singular Value Decomposition of a matrix, i.e. break up a matrix into the product of three matrices: $U$, $\Sigma$, $V^*$

matrix=np.matrix( [[1, 4], [2, 0]] ) svd=np.linalg.svd(matrix) u=svd[0] sigma=svd[1] v=svd[2] u=u.tolist() sigma=sigma.tolist() v=v.tolist() colorscale= [[0, '#111111'],[1, '#222222']] font=['#ffffff', '#ffffff'] matrix_prod= [ ['$U$', '', '$\Sigma$', '$V^*$', ''], [u[0][0], u[0][1], sigma[0], v[0][0], v[0][1]], [u[1][0], u[1][1], sigma[1], v[1][0], v[1][1]] ] table=FF.create_table(matrix_prod) py.iplot(table, filename='svd')
fromIPython.displayimportdisplay, HTMLdisplay(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />')) display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">')) ! pipinstallgit+https://github.com/plotly/publisher.git--upgradeimportpublisherpublisher.publish( 'python_Linear_Algebra.ipynb', 'python/linear-algebra/', 'Linear Algebra | plotly', 'Learn how to perform several operations on matrices including inverse, eigenvalues, and determinents', title='Linear Algebra in Python. | plotly', name='Linear Algebra', language='python', page_type='example_index', has_thumbnail='false', display_as='mathematics', order=10, ipynb='~notebook_demo/104')
close