jupyter | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Plotly's Python library is free and open source! Get started by dowloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!
The tutorial below imports NumPy, Pandas, and SciPy.
importplotly.plotlyaspyimportplotly.graph_objsasgofromplotly.toolsimportFigureFactoryasFFimportnumpyasnpimportpandasaspdimportscipy
A Matrix is a 2D array that stores real or complex numbers. A Real Matrix is one such that all its elements
matrix1=np.matrix( [[0, 4], [2, 0]] ) matrix2=np.matrix( [[-1, 2], [1, -2]] ) matrix_sum=matrix1+matrix2colorscale= [[0, '#EAEFC4'], [1, '#9BDF46']] font=['#000000', '#000000'] table=FF.create_annotated_heatmap(matrix_sum.tolist(), colorscale=colorscale, font_colors=font) py.iplot(table, filename='matrix-sum')
How to find the product of two matrices
matrix1=np.matrix( [[1, 4], [2, 0]] ) matrix2=np.matrix( [[-1, 2], [1, -2]] ) matrix_prod=matrix1*matrix2colorscale= [[0, '#F1FFD9'], [1, '#8BDBF5']] font=['#000000', '#000000'] table=FF.create_annotated_heatmap(matrix_prod.tolist(), colorscale=colorscale, font_colors=font) py.iplot(table, filename='matrix-prod')
How to find the solution of
A=np.matrix( [[1, 4], [2, 0]] ) B=np.matrix( [[-1, 2], [1, -2]] ) X=np.linalg.solve(A, B) colorscale= [[0, '#497285'], [1, '#DFEBED']] font=['#000000', '#000000'] table=FF.create_annotated_heatmap(X.tolist(), colorscale=colorscale, font_colors=font) py.iplot(table, filename='matrix-eq')
matrix=np.matrix( [[1, 4], [2, 0]] ) det=np.linalg.det(matrix) det
matrix=np.matrix( [[1, 4], [2, 0]] ) inverse=np.linalg.inv(matrix) colorscale= [[0, '#F1FAFB'], [1, '#A0E4F1']] font=['#000000', '#000000'] table=FF.create_annotated_heatmap(inverse.tolist(), colorscale=colorscale, font_colors=font) py.iplot(table, filename='inverse')
matrix=np.matrix( [[1, 4], [2, 0]] ) eigvals=np.linalg.eigvals(matrix) print("The eignevalues are %f and %f") %(eigvals[0], eigvals[1])
How to find the Singular Value Decomposition of a matrix, i.e. break up a matrix into the product of three matrices:
matrix=np.matrix( [[1, 4], [2, 0]] ) svd=np.linalg.svd(matrix) u=svd[0] sigma=svd[1] v=svd[2] u=u.tolist() sigma=sigma.tolist() v=v.tolist() colorscale= [[0, '#111111'],[1, '#222222']] font=['#ffffff', '#ffffff'] matrix_prod= [ ['$U$', '', '$\Sigma$', '$V^*$', ''], [u[0][0], u[0][1], sigma[0], v[0][0], v[0][1]], [u[1][0], u[1][1], sigma[1], v[1][0], v[1][1]] ] table=FF.create_table(matrix_prod) py.iplot(table, filename='svd')
fromIPython.displayimportdisplay, HTMLdisplay(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />')) display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">')) ! pipinstallgit+https://github.com/plotly/publisher.git--upgradeimportpublisherpublisher.publish( 'python_Linear_Algebra.ipynb', 'python/linear-algebra/', 'Linear Algebra | plotly', 'Learn how to perform several operations on matrices including inverse, eigenvalues, and determinents', title='Linear Algebra in Python. | plotly', name='Linear Algebra', language='python', page_type='example_index', has_thumbnail='false', display_as='mathematics', order=10, ipynb='~notebook_demo/104')