jupyter | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!
The tutorial below imports numpy, pandas, and scipy
importplotly.plotlyaspyimportplotly.graph_objsasgofromplotly.toolsimportFigureFactoryasFFimportnumpyasnpimportpandasaspdimportscipy
We are generating a 1D dataset from a Weibull Distribution
which has the distribution
where Uniform Distribution
.
x=np.random.weibull(1.25, size=1000) print(x[:10])
By using a histogram, we can properly divide a 1D dataset into bins with a particular size or width, so as to form a discrete probability distribution
trace=go.Histogram(x=x, xbins=dict(start=np.min(x), size=0.25, end=np.max(x)), marker=dict(color='rgb(0, 0, 100)')) layout=go.Layout( title="Histogram Frequency Counts" ) fig=go.Figure(data=go.Data([trace]), layout=layout) py.iplot(fig, filename='histogram-freq-counts')
We can experiment with our bin size and the histogram by grouping the data into larger intervals
trace=go.Histogram(x=x, xbins=dict(start=np.min(x), size=0.75, end=np.max(x)), marker=dict(color='rgb(0, 0, 100)')) layout=go.Layout( title="Histogram Frequency Counts" ) fig=go.Figure(data=go.Data([trace]), layout=layout) py.iplot(fig, filename='histogram-freq-counts-larger-bins')
fromIPython.displayimportdisplay, HTMLdisplay(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />')) display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">')) ! pipinstallgit+https://github.com/plotly/publisher.git--upgradeimportpublisherpublisher.publish( 'python-Frequency-Counts.ipynb', 'python/frequency-counts/', 'Frequency Counts | plotly', 'Learn how to perform frequency counts using Python.', title='Frequency Counts in Python. | plotly', name='Frequency Counts', language='python', page_type='example_index', has_thumbnail='false', display_as='statistics', order=2, ipynb='~notebook_demo/111')