Skip to content

Latest commit

 

History

History
153 lines (117 loc) · 4.79 KB

discrete-frequency.md

File metadata and controls

153 lines (117 loc) · 4.79 KB
jupyter
jupytextkernelspecplotly
notebook_metadata_filtertext_representation
all
extensionformat_nameformat_versionjupytext_version
.md
markdown
1.1
1.1.1
display_namelanguagename
Python 2
python
python2
descriptiondisplay_ashas_thumbnaillanguagelayoutnameorderpage_typepermalinkthumbnail
Learn how to perform discrete frequency analysis using Python.
statistics
false
python
base
Discrete Frequency
3
example_index
python/discrete-frequency/
/images/static-image

New to Plotly?

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

Imports

The tutorial below imports Numpy, Pandas, and SciPy.

importplotly.plotlyaspyimportplotly.graph_objsasgofromplotly.toolsimportFigureFactoryasFFimportnumpyasnpimportpandasaspdimportscipy

Import Data

We will import a dataset to perform our discrete frequency analysis on. We will look at the consumption of alcohol by country in 2010.

data=pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2010_alcohol_consumption_by_country.csv') df=data[0:10] table=FF.create_table(df) py.iplot(table, filename='alcohol-data-sample')

Probability Distribution

We can produce a histogram plot of the data with the y-axis representing the probability distribution of the data.

x=data['alcohol'].values.tolist() trace=go.Histogram(x=x, histnorm='probability', xbins=dict(start=np.min(x), size=0.25, end=np.max(x)), marker=dict(color='rgb(25, 25, 100)')) layout=go.Layout( title="Histogram with Probability Distribution" ) fig=go.Figure(data=go.Data([trace]), layout=layout) py.iplot(fig, filename='histogram-prob-dist')

Frequency Counts

trace=go.Histogram(x=x, xbins=dict(start=np.min(x), size=0.25, end=np.max(x)), marker=dict(color='rgb(25, 25, 100)')) layout=go.Layout( title="Histogram with Frequency Count" ) fig=go.Figure(data=go.Data([trace]), layout=layout) py.iplot(fig, filename='histogram-discrete-freq-count')

Percentage

trace=go.Histogram(x=x, histnorm='percent', xbins=dict(start=np.min(x), size=0.25, end=np.max(x)), marker=dict(color='rgb(50, 50, 125)')) layout=go.Layout( title="Histogram with Frequency Count" ) fig=go.Figure(data=go.Data([trace]), layout=layout) py.iplot(fig, filename='histogram-percentage')

Cumulative Density Function

We can also take the cumulative sum of our dataset and then plot the cumulative density function, or CDF, as a scatter plot

cumsum=np.cumsum(x) trace=go.Scatter(x=[iforiinrange(len(cumsum))], y=10*cumsum/np.linalg.norm(cumsum), marker=dict(color='rgb(150, 25, 120)')) layout=go.Layout( title="Cumulative Distribution Function" ) fig=go.Figure(data=go.Data([trace]), layout=layout) py.iplot(fig, filename='cdf-dataset')
fromIPython.displayimportdisplay, HTMLdisplay(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />')) display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">')) ! pipinstallgit+https://github.com/plotly/publisher.git--upgradeimportpublisherpublisher.publish( 'python-Discrete-Frequency.ipynb', 'python/discrete-frequency/', 'Discrete Frequency | plotly', 'Learn how to perform discrete frequency analysis using Python.', title='Discrete Frequency in Python. | plotly', name='Discrete Frequency', language='python', page_type='example_index', has_thumbnail='false', display_as='statistics', order=3, ipynb='~notebook_demo/110')
close