jupyter | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!
The tutorial below imports NumPy, Pandas, SciPy and Plotly.
importplotly.plotlyaspyimportplotly.graph_objsasgoimportplotly.figure_factoryasffimportnumpyasnpimportpandasaspdimportscipyfromscipyimportsignal
Let us import some stock data to apply convolution on.
stock_data=pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/stockdata.csv') df=stock_data[0:15] table=ff.create_table(df) py.iplot(table, filename='stockdata-peak-fitting')
Convolution
is a type of transform that takes two functions f
and g
and produces another function via an integration. In particular, the convolution
We can use convolution in the discrete case between two n-dimensional arrays.
sample=range(15) saw=signal.sawtooth(t=sample) data_sample=list(stock_data['SBUX'][0:100]) data_sample2=list(stock_data['AAPL'][0:100]) x=list(range(len(data_sample))) y_convolve=signal.convolve(saw, data_sample2) x_convolve=list(range(len(y_convolve))) trace1=go.Scatter( x=x, y=data_sample, mode='lines', name='SBUX' ) trace2=go.Scatter( x=x, y=data_sample2, mode='lines', name='AAPL' ) trace3=go.Scatter( x=x_convolve, y=y_convolve, mode='lines', name='Convolution' ) data= [trace1, trace2, trace3] py.iplot(data, filename='convolution-of-two-signals')
fromIPython.displayimportdisplay, HTMLdisplay(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />')) display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">')) ! pipinstallgit+https://github.com/plotly/publisher.git--upgradeimportpublisherpublisher.publish( 'python-Convolution.ipynb', 'python/convolution/', 'Convolution | plotly', 'Learn how to perform convolution between two signals in Python.', title='Convolution in Python | plotly', name='Convolution', language='python', page_type='example_index', has_thumbnail='false', display_as='signal-analysis', order=4)