Skip to content

Latest commit

 

History

History
182 lines (155 loc) · 5.27 KB

dot-plots.md

File metadata and controls

182 lines (155 loc) · 5.27 KB
jupyter
jupytextkernelspeclanguage_infoplotly
notebook_metadata_filtertext_representation
all
extensionformat_nameformat_versionjupytext_version
.md
markdown
1.2
1.4.2
display_namelanguagename
Python 3
python
python3
codemirror_modefile_extensionmimetypenamenbconvert_exporterpygments_lexerversion
nameversion
ipython
3
.py
text/x-python
python
python
ipython3
3.7.7
descriptiondisplay_aslanguagelayoutnameorderpage_typepermalinkthumbnail
How to make dot plots in Python with Plotly.
basic
python
base
Dot Plots
6
u-guide
python/dot-plots/
thumbnail/dot-plot.jpg

Basic Dot Plot

Dot plots (also known as Cleveland dot plots) are scatter plots with one categorical axis and one continuous axis. They can be used to show changes between two (or more) points in time or between two (or more) conditions. Compared to a bar chart, dot plots can be less cluttered and allow for an easier comparison between conditions.

For the same data, we show below how to create a dot plot using either px.scatter or go.Scatter.

Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.

importplotly.expressaspxdf=px.data.medals_long() fig=px.scatter(df, y="nation", x="count", color="medal", symbol="medal") fig.update_traces(marker_size=10) fig.show()
importplotly.expressaspximportpandasaspdschools= ["Brown", "NYU", "Notre Dame", "Cornell", "Tufts", "Yale", "Dartmouth", "Chicago", "Columbia", "Duke", "Georgetown", "Princeton", "U.Penn", "Stanford", "MIT", "Harvard"] n_schools=len(schools) women_salary= [72, 67, 73, 80, 76, 79, 84, 78, 86, 93, 94, 90, 92, 96, 94, 112] men_salary= [92, 94, 100, 107, 112, 114, 114, 118, 119, 124, 131, 137, 141, 151, 152, 165] df=pd.DataFrame(dict(school=schools*2, salary=men_salary+women_salary, gender=["Men"]*n_schools+ ["Women"]*n_schools)) # Use column names of df for the different parameters x, y, color, ...fig=px.scatter(df, x="salary", y="school", color="gender", title="Gender Earnings Disparity", labels={"salary":"Annual Salary (in thousands)"} # customize axis label ) fig.show()
importplotly.graph_objectsasgoschools= ["Brown", "NYU", "Notre Dame", "Cornell", "Tufts", "Yale", "Dartmouth", "Chicago", "Columbia", "Duke", "Georgetown", "Princeton", "U.Penn", "Stanford", "MIT", "Harvard"] fig=go.Figure() fig.add_trace(go.Scatter( x=[72, 67, 73, 80, 76, 79, 84, 78, 86, 93, 94, 90, 92, 96, 94, 112], y=schools, marker=dict(color="crimson", size=12), mode="markers", name="Women", )) fig.add_trace(go.Scatter( x=[92, 94, 100, 107, 112, 114, 114, 118, 119, 124, 131, 137, 141, 151, 152, 165], y=schools, marker=dict(color="gold", size=12), mode="markers", name="Men", )) fig.update_layout( title=dict( text="Gender Earnings Disparity" ), xaxis=dict( title=dict( text="Annual Salary (in thousands)" ) ), yaxis=dict( title=dict( text="School" ) ), ) fig.show()

Styled Categorical Dot Plot

importplotly.graph_objectsasgocountry= ['Switzerland (2011)', 'Chile (2013)', 'Japan (2014)', 'United States (2012)', 'Slovenia (2014)', 'Canada (2011)', 'Poland (2010)', 'Estonia (2015)', 'Luxembourg (2013)', 'Portugal (2011)'] voting_pop= [40, 45.7, 52, 53.6, 54.1, 54.2, 54.5, 54.7, 55.1, 56.6] reg_voters= [49.1, 42, 52.7, 84.3, 51.7, 61.1, 55.3, 64.2, 91.1, 58.9] fig=go.Figure() fig.add_trace(go.Scatter( x=voting_pop, y=country, name='Percent of estimated voting age population', marker=dict( color='rgba(156, 165, 196, 0.95)', line_color='rgba(156, 165, 196, 1.0)', ) )) fig.add_trace(go.Scatter( x=reg_voters, y=country, name='Percent of estimated registered voters', marker=dict( color='rgba(204, 204, 204, 0.95)', line_color='rgba(217, 217, 217, 1.0)' ) )) fig.update_traces(mode='markers', marker=dict(line_width=1, symbol='circle', size=16)) fig.update_layout( title=dict(text="Votes cast for ten lowest voting age population in OECD countries"), xaxis=dict( showgrid=False, showline=True, linecolor='rgb(102, 102, 102)', tickfont_color='rgb(102, 102, 102)', showticklabels=True, dtick=10, ticks='outside', tickcolor='rgb(102, 102, 102)', ), margin=dict(l=140, r=40, b=50, t=80), legend=dict( font_size=10, yanchor='middle', xanchor='right', ), width=800, height=600, paper_bgcolor='white', plot_bgcolor='white', hovermode='closest', ) fig.show()

Reference

See https://plotly.com/python/reference/scatter/ for more information and chart attribute options!

close