jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
ManhattanPlot allows you to visualize genome-wide association studies (GWAS) efficiently. Using WebGL under the hood, you can interactively explore overviews of massive datasets comprising hundreds of thousands of points at once, or take a closer look at a small subset of your data. Hover data and click data are accessible from within the Dash app.
importpandasaspdimportdash_biodf=pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv') dash_bio.ManhattanPlot( dataframe=df, )
Change the color of the points that are considered significant.
importpandasaspdimportdash_biodf=pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv') dash_bio.ManhattanPlot( dataframe=df, highlight_color='#00FFAA', suggestiveline_color='#AA00AA', genomewideline_color='#AA5500' )
fromIPython.displayimportIFramesnippet_url='https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'IFrame(snippet_url+'bio-manhattanplot', width='100%', height=1200)