This repository was archived by the owner on Apr 24, 2025. It is now read-only.
- Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathsetup.py
314 lines (277 loc) · 10.2 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Modified from https://github.com/vllm-project/vllm/blob/main/setup.py
importcontextlib
importio
importos
importre
importsubprocess
importwarnings
frompathlibimportPath
fromtypingimportList, Set
importsetuptools
importtorch
importtorch.utils.cpp_extensionastorch_cpp_ext
frompackaging.versionimportVersion, parse
fromtorch.utils.cpp_extensionimportCUDA_HOME, BuildExtension, CUDAExtension
ROOT_DIR=os.path.abspath(os.path.dirname(__file__))
# Supported NVIDIA GPU architectures.
NVIDIA_SUPPORTED_ARCHS= {"7.0", "7.5", "8.0", "8.6", "8.9", "9.0"}
def_is_cuda() ->bool:
returnos.getenv("REAL_CUDA", "0") =="1"
# Compiler flags.
CXX_FLAGS= ["-g", "-O3", "-std=c++17"]
NVCC_FLAGS= ["-O3", "-std=c++17"]
if_is_cuda() andCUDA_HOMEisNone:
raiseRuntimeError(
"Cannot find CUDA_HOME. In GPU environment, CUDA must be available to build the package."
)
ABI=1iftorch._C._GLIBCXX_USE_CXX11_ABIelse0
CXX_FLAGS+= [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
NVCC_FLAGS+= [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
defglob(pattern: str):
root=Path(__name__).parent
return [str(p) forpinroot.glob(pattern)]
defget_pybind11_include_path() ->str:
pybind11_meta=subprocess.check_output(
"python3 -m pip show pybind11", shell=True
).decode("ascii")
forlineinpybind11_meta.split("\n"):
line=line.strip()
ifline.startswith("Location: "):
returnos.path.join(line.split(": ")[1], "pybind11", "include")
defget_nvcc_cuda_version(cuda_dir: str) ->Version:
"""Get the CUDA version from nvcc.
Adapted from
https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py
"""
nvcc_output=subprocess.check_output(
[cuda_dir+"/bin/nvcc", "-V"], universal_newlines=True
)
output=nvcc_output.split()
release_idx=output.index("release") +1
nvcc_cuda_version=parse(output[release_idx].split(",")[0])
returnnvcc_cuda_version
defget_torch_arch_list() ->Set[str]:
# TORCH_CUDA_ARCH_LIST can have one or more architectures,
# e.g."8.0" or "7.5,8.0,8.6+PTX".Here, the "8.6+PTX" option asks the
# compiler to additionally include PTX code that can be runtime - compiled
# and executed on the 8.6 or newer architectures.While the PTX code will
# not give the best performance on the newer architectures, it provides
# forward compatibility.
env_arch_list=os.environ.get("TORCH_CUDA_ARCH_LIST", None)
ifenv_arch_listisNone:
returnset()
# List are separated by; or space.
torch_arch_list=set(env_arch_list.replace(" ", ";").split(";"))
ifnottorch_arch_list:
returnset()
# Filter out the invalid architectures and print a warning.
valid_archs=NVIDIA_SUPPORTED_ARCHS.union(
{s+"+PTX"forsinNVIDIA_SUPPORTED_ARCHS}
)
arch_list=torch_arch_list.intersection(valid_archs)
# If none of the specified architectures are valid, raise an error.
ifnotarch_list:
raiseRuntimeError(
"None of the CUDA architectures in `TORCH_CUDA_ARCH_LIST` env "
f"variable ({env_arch_list}) is supported. "
f"Supported CUDA architectures are: {valid_archs}."
)
invalid_arch_list=torch_arch_list-valid_archs
ifinvalid_arch_list:
warnings.warn(
f"Unsupported CUDA architectures ({invalid_arch_list}) are "
"excluded from the `TORCH_CUDA_ARCH_LIST` env variable "
f"({env_arch_list}). Supported CUDA architectures are: "
f"{valid_archs}.",
stacklevel=2,
)
returnarch_list
# First, check the TORCH_CUDA_ARCH_LIST environment variable.
compute_capabilities=get_torch_arch_list()
if_is_cuda() andnotcompute_capabilities:
# If TORCH_CUDA_ARCH_LIST is not defined or empty, target all available
# GPUs on the current machine.
device_count=torch.cuda.device_count()
foriinrange(device_count):
major, minor=torch.cuda.get_device_capability(i)
ifmajor<7:
raiseRuntimeError(
"GPUs with compute capability below 7.0 are not supported."
)
compute_capabilities.add(f"{major}.{minor}")
ext_modules= []
if_is_cuda():
nvcc_cuda_version=get_nvcc_cuda_version(CUDA_HOME)
ifnotcompute_capabilities:
# If no GPU is specified nor available, add all supported architectures
# based on the NVCC CUDA version.
compute_capabilities=NVIDIA_SUPPORTED_ARCHS.copy()
ifnvcc_cuda_version<Version("11.1"):
compute_capabilities.remove("8.6")
ifnvcc_cuda_version<Version("11.8"):
compute_capabilities.remove("8.9")
compute_capabilities.remove("9.0")
# Validate the NVCC CUDA version.
ifnvcc_cuda_version<Version("11.0"):
raiseRuntimeError("CUDA 11.0 or higher is required to build the package.")
ifnvcc_cuda_version<Version("11.1") andany(
cc.startswith("8.6") forccincompute_capabilities
):
raiseRuntimeError(
"CUDA 11.1 or higher is required for compute capability 8.6."
)
ifnvcc_cuda_version<Version("11.8"):
ifany(cc.startswith("8.9") forccincompute_capabilities):
# CUDA 11.8 is required to generate the code targeting compute capability 8.9.
# However, GPUs with compute capability 8.9 can also run the code generated by
# the previous versions of CUDA 11 and targeting compute capability 8.0.
# Therefore, if CUDA 11.8 is not available, we target compute capability 8.0
# instead of 8.9.
warnings.warn(
"CUDA 11.8 or higher is required for compute capability 8.9. "
"Targeting compute capability 8.0 instead.",
stacklevel=2,
)
compute_capabilities=set(
ccforccincompute_capabilitiesifnotcc.startswith("8.9")
)
compute_capabilities.add("8.0+PTX")
ifany(cc.startswith("9.0") forccincompute_capabilities):
raiseRuntimeError(
"CUDA 11.8 or higher is required for compute capability 9.0."
)
NVCC_FLAGS_PUNICA=NVCC_FLAGS.copy()
# Add target compute capabilities to NVCC flags.
forcapabilityincompute_capabilities:
num=capability[0] +capability[2]
NVCC_FLAGS+= ["-gencode", f"arch=compute_{num},code=sm_{num}"]
ifcapability.endswith("+PTX"):
NVCC_FLAGS+= ["-gencode", f"arch=compute_{num},code=compute_{num}"]
ifint(capability[0]) >=8:
NVCC_FLAGS_PUNICA+= [
"-gencode",
f"arch=compute_{num},code=sm_{num}",
]
ifcapability.endswith("+PTX"):
NVCC_FLAGS_PUNICA+= [
"-gencode",
f"arch=compute_{num},code=compute_{num}",
]
# Use NVCC threads to parallelize the build.
ifnvcc_cuda_version>=Version("11.2"):
nvcc_threads=int(os.getenv("NVCC_THREADS", 8))
num_threads=min(os.cpu_count(), nvcc_threads)
NVCC_FLAGS+= ["--threads", str(num_threads)]
ifnvcc_cuda_version>=Version("11.8"):
NVCC_FLAGS+= ["-DENABLE_FP8_E5M2"]
# changes for punica kernels
NVCC_FLAGS+=torch_cpp_ext.COMMON_NVCC_FLAGS
REMOVE_NVCC_FLAGS= [
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_BFLOAT16_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
]
forflaginREMOVE_NVCC_FLAGS:
withcontextlib.suppress(ValueError):
torch_cpp_ext.COMMON_NVCC_FLAGS.remove(flag)
os.makedirs(os.path.join(ROOT_DIR, "realhf", "_C"), exist_ok=True)
if_is_cuda():
cr_extension=CUDAExtension(
name="realhf._C.custom_all_reduce",
sources=[
"csrc/custom_all_reduce/custom_all_reduce.cu",
"csrc/custom_all_reduce/pybind.cpp",
],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
libraries=["cuda"],
)
ext_modules.append(cr_extension)
gae_extension=CUDAExtension(
name="realhf._C.cugae",
sources=[
"csrc/cugae/gae.cu",
],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS
+ [
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
"--use_fast_math",
],
},
libraries=["cuda"],
)
ext_modules.append(gae_extension)
interval_op_cuda=CUDAExtension(
name="realhf._C.interval_op_cuda",
sources=[
"csrc/interval_op/interval_op.cu",
],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
libraries=["cuda"],
)
ext_modules.append(interval_op_cuda)
search_extension=setuptools.Extension(
name="realhf._C.mdm_search",
sources=[
"csrc/search/search.cpp",
"csrc/search/rpc.cpp",
"csrc/search/device_mesh.cpp",
"csrc/search/simulate.cpp",
],
language="c++",
extra_compile_args=[
"-O3",
"-Wall",
"-shared",
"-std=c++11",
"-fPIC",
"-std=c++17",
],
include_dirs=[
os.path.join(os.path.abspath(os.path.dirname(__file__)), "csrc", "search"),
get_pybind11_include_path(),
],
)
ext_modules.append(search_extension)
interval_extension=setuptools.Extension(
name="realhf._C.interval_op",
sources=[
"csrc/interval_op/interval_op.cpp",
],
language="c++",
extra_compile_args=[
"-O3",
"-Wall",
"-std=c++17",
],
include_dirs=[
get_pybind11_include_path(),
],
)
ext_modules.append(interval_extension)
ifos.getenv("REAL_NO_EXT", "0") =="1":
ext_modules= []
setuptools.setup(
name="realhf",
ext_modules=ext_modules,
cmdclass={"build_ext": BuildExtension},
packages=setuptools.find_packages(),
include_package_data=True,
package_data={
"": [
"csrc/**/*.cu",
"csrc/**/*.cuh",
"csrc/**/*.hpp",
"csrc/**/*.cpp",
],
},
)