- Notifications
You must be signed in to change notification settings - Fork 5.8k
/
Copy pathtrees.c
1141 lines (991 loc) · 41.1 KB
/
trees.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* trees.c -- output deflated data using Huffman coding
* Copyright (C) 1995-2024 Jean-loup Gailly
* detect_data_type() function provided freely by Cosmin Truta, 2006
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/*
* ALGORITHM
*
* The "deflation" process uses several Huffman trees. The more
* common source values are represented by shorter bit sequences.
*
* Each code tree is stored in a compressed form which is itself
* a Huffman encoding of the lengths of all the code strings (in
* ascending order by source values). The actual code strings are
* reconstructed from the lengths in the inflate process, as described
* in the deflate specification.
*
* REFERENCES
*
* Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
* Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
*
* Storer, James A.
* Data Compression: Methods and Theory, pp. 49-50.
* Computer Science Press, 1988. ISBN 0-7167-8156-5.
*
* Sedgewick, R.
* Algorithms, p290.
* Addison-Wesley, 1983. ISBN 0-201-06672-6.
*/
/* @(#) $Id$ */
/* #define GEN_TREES_H */
#include"deflate.h"
#ifdefZLIB_DEBUG
# include<ctype.h>
#endif
/* ===========================================================================
* Constants
*/
#defineMAX_BL_BITS 7
/* Bit length codes must not exceed MAX_BL_BITS bits */
#defineEND_BLOCK 256
/* end of block literal code */
#defineREP_3_6 16
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
#defineREPZ_3_10 17
/* repeat a zero length 3-10 times (3 bits of repeat count) */
#defineREPZ_11_138 18
/* repeat a zero length 11-138 times (7 bits of repeat count) */
localconstintextra_lbits[LENGTH_CODES] /* extra bits for each length code */
= {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
localconstintextra_dbits[D_CODES] /* extra bits for each distance code */
= {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
localconstintextra_blbits[BL_CODES]/* extra bits for each bit length code */
= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
localconstuchbl_order[BL_CODES]
= {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
/* The lengths of the bit length codes are sent in order of decreasing
* probability, to avoid transmitting the lengths for unused bit length codes.
*/
/* ===========================================================================
* Local data. These are initialized only once.
*/
#defineDIST_CODE_LEN 512 /* see definition of array dist_code below */
#if defined(GEN_TREES_H) || !defined(STDC)
/* non ANSI compilers may not accept trees.h */
localct_datastatic_ltree[L_CODES+2];
/* The static literal tree. Since the bit lengths are imposed, there is no
* need for the L_CODES extra codes used during heap construction. However
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init
* below).
*/
localct_datastatic_dtree[D_CODES];
/* The static distance tree. (Actually a trivial tree since all codes use
* 5 bits.)
*/
uch_dist_code[DIST_CODE_LEN];
/* Distance codes. The first 256 values correspond to the distances
* 3 .. 258, the last 256 values correspond to the top 8 bits of
* the 15 bit distances.
*/
uch_length_code[MAX_MATCH-MIN_MATCH+1];
/* length code for each normalized match length (0 == MIN_MATCH) */
localintbase_length[LENGTH_CODES];
/* First normalized length for each code (0 = MIN_MATCH) */
localintbase_dist[D_CODES];
/* First normalized distance for each code (0 = distance of 1) */
#else
# include"trees.h"
#endif/* GEN_TREES_H */
structstatic_tree_desc_s {
constct_data*static_tree; /* static tree or NULL */
constintf*extra_bits; /* extra bits for each code or NULL */
intextra_base; /* base index for extra_bits */
intelems; /* max number of elements in the tree */
intmax_length; /* max bit length for the codes */
};
#ifdefNO_INIT_GLOBAL_POINTERS
# defineTCONST
#else
# defineTCONST const
#endif
localTCONSTstatic_tree_descstatic_l_desc=
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
localTCONSTstatic_tree_descstatic_d_desc=
{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
localTCONSTstatic_tree_descstatic_bl_desc=
{(constct_data*)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
/* ===========================================================================
* Output a short LSB first on the stream.
* IN assertion: there is enough room in pendingBuf.
*/
#defineput_short(s, w) { \
put_byte(s, (uch)((w) & 0xff)); \
put_byte(s, (uch)((ush)(w) >> 8)); \
}
/* ===========================================================================
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
local unsignedbi_reverse(unsignedcode, intlen) {
register unsignedres=0;
do {
res |= code&1;
code >>= 1, res <<= 1;
} while (--len>0);
returnres >> 1;
}
/* ===========================================================================
* Flush the bit buffer, keeping at most 7 bits in it.
*/
localvoidbi_flush(deflate_state*s) {
if (s->bi_valid==16) {
put_short(s, s->bi_buf);
s->bi_buf=0;
s->bi_valid=0;
} elseif (s->bi_valid >= 8) {
put_byte(s, (Byte)s->bi_buf);
s->bi_buf >>= 8;
s->bi_valid-=8;
}
}
/* ===========================================================================
* Flush the bit buffer and align the output on a byte boundary
*/
localvoidbi_windup(deflate_state*s) {
if (s->bi_valid>8) {
put_short(s, s->bi_buf);
} elseif (s->bi_valid>0) {
put_byte(s, (Byte)s->bi_buf);
}
s->bi_buf=0;
s->bi_valid=0;
#ifdefZLIB_DEBUG
s->bits_sent= (s->bits_sent+7) & ~7;
#endif
}
/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
localvoidgen_codes(ct_data*tree, intmax_code, ushf*bl_count) {
ushnext_code[MAX_BITS+1]; /* next code value for each bit length */
unsignedcode=0; /* running code value */
intbits; /* bit index */
intn; /* code index */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits=1; bits <= MAX_BITS; bits++) {
code= (code+bl_count[bits-1]) << 1;
next_code[bits] = (ush)code;
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
Assert (code+bl_count[MAX_BITS] -1== (1 << MAX_BITS) -1,
"inconsistent bit counts");
Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
for (n=0; n <= max_code; n++) {
intlen=tree[n].Len;
if (len==0) continue;
/* Now reverse the bits */
tree[n].Code= (ush)bi_reverse(next_code[len]++, len);
Tracecv(tree!=static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] -1));
}
}
#ifdefGEN_TREES_H
localvoidgen_trees_header(void);
#endif
#ifndefZLIB_DEBUG
# definesend_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
/* Send a code of the given tree. c and tree must not have side effects */
#else/* !ZLIB_DEBUG */
# definesend_code(s, c, tree) \
{ if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
send_bits(s, tree[c].Code, tree[c].Len); }
#endif
/* ===========================================================================
* Send a value on a given number of bits.
* IN assertion: length <= 16 and value fits in length bits.
*/
#ifdefZLIB_DEBUG
localvoidsend_bits(deflate_state*s, intvalue, intlength) {
Tracevv((stderr," l %2d v %4x ", length, value));
Assert(length>0&&length <= 15, "invalid length");
s->bits_sent+= (ulg)length;
/* If not enough room in bi_buf, use (valid) bits from bi_buf and
* (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
* unused bits in value.
*/
if (s->bi_valid> (int)Buf_size-length) {
s->bi_buf |= (ush)value << s->bi_valid;
put_short(s, s->bi_buf);
s->bi_buf= (ush)value >> (Buf_size-s->bi_valid);
s->bi_valid+=length-Buf_size;
} else {
s->bi_buf |= (ush)value << s->bi_valid;
s->bi_valid+=length;
}
}
#else/* !ZLIB_DEBUG */
#definesend_bits(s, value, length) \
{ int len = length;\
if (s->bi_valid > (int)Buf_size - len) {\
int val = (int)value;\
s->bi_buf |= (ush)val << s->bi_valid;\
put_short(s, s->bi_buf);\
s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
s->bi_valid += len - Buf_size;\
} else {\
s->bi_buf |= (ush)(value) << s->bi_valid;\
s->bi_valid += len;\
}\
}
#endif/* ZLIB_DEBUG */
/* the arguments must not have side effects */
/* ===========================================================================
* Initialize the various 'constant' tables.
*/
localvoidtr_static_init(void) {
#if defined(GEN_TREES_H) || !defined(STDC)
staticintstatic_init_done=0;
intn; /* iterates over tree elements */
intbits; /* bit counter */
intlength; /* length value */
intcode; /* code value */
intdist; /* distance index */
ushbl_count[MAX_BITS+1];
/* number of codes at each bit length for an optimal tree */
if (static_init_done) return;
/* For some embedded targets, global variables are not initialized: */
#ifdefNO_INIT_GLOBAL_POINTERS
static_l_desc.static_tree=static_ltree;
static_l_desc.extra_bits=extra_lbits;
static_d_desc.static_tree=static_dtree;
static_d_desc.extra_bits=extra_dbits;
static_bl_desc.extra_bits=extra_blbits;
#endif
/* Initialize the mapping length (0..255) -> length code (0..28) */
length=0;
for (code=0; code<LENGTH_CODES-1; code++) {
base_length[code] =length;
for (n=0; n< (1 << extra_lbits[code]); n++) {
_length_code[length++] = (uch)code;
}
}
Assert (length==256, "tr_static_init: length != 256");
/* Note that the length 255 (match length 258) can be represented
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
*/
_length_code[length-1] = (uch)code;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist=0;
for (code=0 ; code<16; code++) {
base_dist[code] =dist;
for (n=0; n< (1 << extra_dbits[code]); n++) {
_dist_code[dist++] = (uch)code;
}
}
Assert (dist==256, "tr_static_init: dist != 256");
dist >>= 7; /* from now on, all distances are divided by 128 */
for ( ; code<D_CODES; code++) {
base_dist[code] =dist << 7;
for (n=0; n< (1 << (extra_dbits[code] -7)); n++) {
_dist_code[256+dist++] = (uch)code;
}
}
Assert (dist==256, "tr_static_init: 256 + dist != 512");
/* Construct the codes of the static literal tree */
for (bits=0; bits <= MAX_BITS; bits++) bl_count[bits] =0;
n=0;
while (n <= 143) static_ltree[n++].Len=8, bl_count[8]++;
while (n <= 255) static_ltree[n++].Len=9, bl_count[9]++;
while (n <= 279) static_ltree[n++].Len=7, bl_count[7]++;
while (n <= 287) static_ltree[n++].Len=8, bl_count[8]++;
/* Codes 286 and 287 do not exist, but we must include them in the
* tree construction to get a canonical Huffman tree (longest code
* all ones)
*/
gen_codes((ct_data*)static_ltree, L_CODES+1, bl_count);
/* The static distance tree is trivial: */
for (n=0; n<D_CODES; n++) {
static_dtree[n].Len=5;
static_dtree[n].Code=bi_reverse((unsigned)n, 5);
}
static_init_done=1;
# ifdefGEN_TREES_H
gen_trees_header();
# endif
#endif/* defined(GEN_TREES_H) || !defined(STDC) */
}
/* ===========================================================================
* Generate the file trees.h describing the static trees.
*/
#ifdefGEN_TREES_H
# ifndefZLIB_DEBUG
# include<stdio.h>
# endif
# defineSEPARATOR(i, last, width) \
((i) == (last)? "\n};\n\n" : \
((i) % (width) == (width) - 1 ? ",\n" : ", "))
voidgen_trees_header(void) {
FILE*header=fopen("trees.h", "w");
inti;
Assert (header!=NULL, "Can't open trees.h");
fprintf(header,
"/* header created automatically with -DGEN_TREES_H */\n\n");
fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
for (i=0; i<L_CODES+2; i++) {
fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
}
fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
for (i=0; i<D_CODES; i++) {
fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
}
fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
for (i=0; i<DIST_CODE_LEN; i++) {
fprintf(header, "%2u%s", _dist_code[i],
SEPARATOR(i, DIST_CODE_LEN-1, 20));
}
fprintf(header,
"const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
for (i=0; i<MAX_MATCH-MIN_MATCH+1; i++) {
fprintf(header, "%2u%s", _length_code[i],
SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
}
fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
for (i=0; i<LENGTH_CODES; i++) {
fprintf(header, "%1u%s", base_length[i],
SEPARATOR(i, LENGTH_CODES-1, 20));
}
fprintf(header, "local const int base_dist[D_CODES] = {\n");
for (i=0; i<D_CODES; i++) {
fprintf(header, "%5u%s", base_dist[i],
SEPARATOR(i, D_CODES-1, 10));
}
fclose(header);
}
#endif/* GEN_TREES_H */
/* ===========================================================================
* Initialize a new block.
*/
localvoidinit_block(deflate_state*s) {
intn; /* iterates over tree elements */
/* Initialize the trees. */
for (n=0; n<L_CODES; n++) s->dyn_ltree[n].Freq=0;
for (n=0; n<D_CODES; n++) s->dyn_dtree[n].Freq=0;
for (n=0; n<BL_CODES; n++) s->bl_tree[n].Freq=0;
s->dyn_ltree[END_BLOCK].Freq=1;
s->opt_len=s->static_len=0L;
s->sym_next=s->matches=0;
}
/* ===========================================================================
* Initialize the tree data structures for a new zlib stream.
*/
voidZLIB_INTERNAL_tr_init(deflate_state*s) {
tr_static_init();
s->l_desc.dyn_tree=s->dyn_ltree;
s->l_desc.stat_desc=&static_l_desc;
s->d_desc.dyn_tree=s->dyn_dtree;
s->d_desc.stat_desc=&static_d_desc;
s->bl_desc.dyn_tree=s->bl_tree;
s->bl_desc.stat_desc=&static_bl_desc;
s->bi_buf=0;
s->bi_valid=0;
#ifdefZLIB_DEBUG
s->compressed_len=0L;
s->bits_sent=0L;
#endif
/* Initialize the first block of the first file: */
init_block(s);
}
#defineSMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */
/* ===========================================================================
* Remove the smallest element from the heap and recreate the heap with
* one less element. Updates heap and heap_len.
*/
#definepqremove(s, tree, top) \
{\
top = s->heap[SMALLEST]; \
s->heap[SMALLEST] = s->heap[s->heap_len--]; \
pqdownheap(s, tree, SMALLEST); \
}
/* ===========================================================================
* Compares to subtrees, using the tree depth as tie breaker when
* the subtrees have equal frequency. This minimizes the worst case length.
*/
#definesmaller(tree, n, m, depth) \
(tree[n].Freq < tree[m].Freq || \
(tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
/* ===========================================================================
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
localvoidpqdownheap(deflate_state*s, ct_data*tree, intk) {
intv=s->heap[k];
intj=k << 1; /* left son of k */
while (j <= s->heap_len) {
/* Set j to the smallest of the two sons: */
if (j<s->heap_len&&
smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
j++;
}
/* Exit if v is smaller than both sons */
if (smaller(tree, v, s->heap[j], s->depth)) break;
/* Exchange v with the smallest son */
s->heap[k] =s->heap[j]; k=j;
/* And continue down the tree, setting j to the left son of k */
j <<= 1;
}
s->heap[k] =v;
}
/* ===========================================================================
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
localvoidgen_bitlen(deflate_state*s, tree_desc*desc) {
ct_data*tree=desc->dyn_tree;
intmax_code=desc->max_code;
constct_data*stree=desc->stat_desc->static_tree;
constintf*extra=desc->stat_desc->extra_bits;
intbase=desc->stat_desc->extra_base;
intmax_length=desc->stat_desc->max_length;
inth; /* heap index */
intn, m; /* iterate over the tree elements */
intbits; /* bit length */
intxbits; /* extra bits */
ushf; /* frequency */
intoverflow=0; /* number of elements with bit length too large */
for (bits=0; bits <= MAX_BITS; bits++) s->bl_count[bits] =0;
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
tree[s->heap[s->heap_max]].Len=0; /* root of the heap */
for (h=s->heap_max+1; h<HEAP_SIZE; h++) {
n=s->heap[h];
bits=tree[tree[n].Dad].Len+1;
if (bits>max_length) bits=max_length, overflow++;
tree[n].Len= (ush)bits;
/* We overwrite tree[n].Dad which is no longer needed */
if (n>max_code) continue; /* not a leaf node */
s->bl_count[bits]++;
xbits=0;
if (n >= base) xbits=extra[n-base];
f=tree[n].Freq;
s->opt_len+= (ulg)f* (unsigned)(bits+xbits);
if (stree) s->static_len+= (ulg)f* (unsigned)(stree[n].Len+xbits);
}
if (overflow==0) return;
Tracev((stderr,"\nbit length overflow\n"));
/* This happens for example on obj2 and pic of the Calgary corpus */
/* Find the first bit length which could increase: */
do {
bits=max_length-1;
while (s->bl_count[bits] ==0) bits--;
s->bl_count[bits]--; /* move one leaf down the tree */
s->bl_count[bits+1] +=2; /* move one overflow item as its brother */
s->bl_count[max_length]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow-=2;
} while (overflow>0);
/* Now recompute all bit lengths, scanning in increasing frequency.
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
* lengths instead of fixing only the wrong ones. This idea is taken
* from 'ar' written by Haruhiko Okumura.)
*/
for (bits=max_length; bits!=0; bits--) {
n=s->bl_count[bits];
while (n!=0) {
m=s->heap[--h];
if (m>max_code) continue;
if ((unsigned) tree[m].Len!= (unsigned) bits) {
Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
s->opt_len+= ((ulg)bits-tree[m].Len) *tree[m].Freq;
tree[m].Len= (ush)bits;
}
n--;
}
}
}
#ifdefDUMP_BL_TREE
# include<stdio.h>
#endif
/* ===========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
localvoidbuild_tree(deflate_state*s, tree_desc*desc) {
ct_data*tree=desc->dyn_tree;
constct_data*stree=desc->stat_desc->static_tree;
intelems=desc->stat_desc->elems;
intn, m; /* iterate over heap elements */
intmax_code=-1; /* largest code with non zero frequency */
intnode; /* new node being created */
/* Construct the initial heap, with least frequent element in
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
* heap[0] is not used.
*/
s->heap_len=0, s->heap_max=HEAP_SIZE;
for (n=0; n<elems; n++) {
if (tree[n].Freq!=0) {
s->heap[++(s->heap_len)] =max_code=n;
s->depth[n] =0;
} else {
tree[n].Len=0;
}
}
/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (s->heap_len<2) {
node=s->heap[++(s->heap_len)] = (max_code<2 ? ++max_code : 0);
tree[node].Freq=1;
s->depth[node] =0;
s->opt_len--; if (stree) s->static_len-=stree[node].Len;
/* node is 0 or 1 so it does not have extra bits */
}
desc->max_code=max_code;
/* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n=s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
node=elems; /* next internal node of the tree */
do {
pqremove(s, tree, n); /* n = node of least frequency */
m=s->heap[SMALLEST]; /* m = node of next least frequency */
s->heap[--(s->heap_max)] =n; /* keep the nodes sorted by frequency */
s->heap[--(s->heap_max)] =m;
/* Create a new node father of n and m */
tree[node].Freq=tree[n].Freq+tree[m].Freq;
s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
s->depth[n] : s->depth[m]) +1);
tree[n].Dad=tree[m].Dad= (ush)node;
#ifdefDUMP_BL_TREE
if (tree==s->bl_tree) {
fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
}
#endif
/* and insert the new node in the heap */
s->heap[SMALLEST] =node++;
pqdownheap(s, tree, SMALLEST);
} while (s->heap_len >= 2);
s->heap[--(s->heap_max)] =s->heap[SMALLEST];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen(s, (tree_desc*)desc);
/* The field len is now set, we can generate the bit codes */
gen_codes ((ct_data*)tree, max_code, s->bl_count);
}
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree.
*/
localvoidscan_tree(deflate_state*s, ct_data*tree, intmax_code) {
intn; /* iterates over all tree elements */
intprevlen=-1; /* last emitted length */
intcurlen; /* length of current code */
intnextlen=tree[0].Len; /* length of next code */
intcount=0; /* repeat count of the current code */
intmax_count=7; /* max repeat count */
intmin_count=4; /* min repeat count */
if (nextlen==0) max_count=138, min_count=3;
tree[max_code+1].Len= (ush)0xffff; /* guard */
for (n=0; n <= max_code; n++) {
curlen=nextlen; nextlen=tree[n+1].Len;
if (++count<max_count&&curlen==nextlen) {
continue;
} elseif (count<min_count) {
s->bl_tree[curlen].Freq+=count;
} elseif (curlen!=0) {
if (curlen!=prevlen) s->bl_tree[curlen].Freq++;
s->bl_tree[REP_3_6].Freq++;
} elseif (count <= 10) {
s->bl_tree[REPZ_3_10].Freq++;
} else {
s->bl_tree[REPZ_11_138].Freq++;
}
count=0; prevlen=curlen;
if (nextlen==0) {
max_count=138, min_count=3;
} elseif (curlen==nextlen) {
max_count=6, min_count=3;
} else {
max_count=7, min_count=4;
}
}
}
/* ===========================================================================
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
localvoidsend_tree(deflate_state*s, ct_data*tree, intmax_code) {
intn; /* iterates over all tree elements */
intprevlen=-1; /* last emitted length */
intcurlen; /* length of current code */
intnextlen=tree[0].Len; /* length of next code */
intcount=0; /* repeat count of the current code */
intmax_count=7; /* max repeat count */
intmin_count=4; /* min repeat count */
/* tree[max_code + 1].Len = -1; *//* guard already set */
if (nextlen==0) max_count=138, min_count=3;
for (n=0; n <= max_code; n++) {
curlen=nextlen; nextlen=tree[n+1].Len;
if (++count<max_count&&curlen==nextlen) {
continue;
} elseif (count<min_count) {
do { send_code(s, curlen, s->bl_tree); } while (--count!=0);
} elseif (curlen!=0) {
if (curlen!=prevlen) {
send_code(s, curlen, s->bl_tree); count--;
}
Assert(count >= 3&&count <= 6, " 3_6?");
send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
} elseif (count <= 10) {
send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
} else {
send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
}
count=0; prevlen=curlen;
if (nextlen==0) {
max_count=138, min_count=3;
} elseif (curlen==nextlen) {
max_count=6, min_count=3;
} else {
max_count=7, min_count=4;
}
}
}
/* ===========================================================================
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
localintbuild_bl_tree(deflate_state*s) {
intmax_blindex; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
scan_tree(s, (ct_data*)s->dyn_ltree, s->l_desc.max_code);
scan_tree(s, (ct_data*)s->dyn_dtree, s->d_desc.max_code);
/* Build the bit length tree: */
build_tree(s, (tree_desc*)(&(s->bl_desc)));
/* opt_len now includes the length of the tree representations, except the
* lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
*/
/* Determine the number of bit length codes to send. The pkzip format
* requires that at least 4 bit length codes be sent. (appnote.txt says
* 3 but the actual value used is 4.)
*/
for (max_blindex=BL_CODES-1; max_blindex >= 3; max_blindex--) {
if (s->bl_tree[bl_order[max_blindex]].Len!=0) break;
}
/* Update opt_len to include the bit length tree and counts */
s->opt_len+=3*((ulg)max_blindex+1) +5+5+4;
Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
s->opt_len, s->static_len));
returnmax_blindex;
}
/* ===========================================================================
* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
localvoidsend_all_trees(deflate_state*s, intlcodes, intdcodes,
intblcodes) {
intrank; /* index in bl_order */
Assert (lcodes >= 257&&dcodes >= 1&&blcodes >= 4, "not enough codes");
Assert (lcodes <= L_CODES&&dcodes <= D_CODES&&blcodes <= BL_CODES,
"too many codes");
Tracev((stderr, "\nbl counts: "));
send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
send_bits(s, dcodes-1, 5);
send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
for (rank=0; rank<blcodes; rank++) {
Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
}
Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
send_tree(s, (ct_data*)s->dyn_ltree, lcodes-1); /* literal tree */
Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
send_tree(s, (ct_data*)s->dyn_dtree, dcodes-1); /* distance tree */
Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
}
/* ===========================================================================
* Send a stored block
*/
voidZLIB_INTERNAL_tr_stored_block(deflate_state*s, charf*buf,
ulgstored_len, intlast) {
send_bits(s, (STORED_BLOCK<<1) +last, 3); /* send block type */
bi_windup(s); /* align on byte boundary */
put_short(s, (ush)stored_len);
put_short(s, (ush)~stored_len);
if (stored_len)
zmemcpy(s->pending_buf+s->pending, (Bytef*)buf, stored_len);
s->pending+=stored_len;
#ifdefZLIB_DEBUG
s->compressed_len= (s->compressed_len+3+7) & (ulg)~7L;
s->compressed_len+= (stored_len+4) << 3;
s->bits_sent+=2*16;
s->bits_sent+=stored_len << 3;
#endif
}
/* ===========================================================================
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
*/
voidZLIB_INTERNAL_tr_flush_bits(deflate_state*s) {
bi_flush(s);
}
/* ===========================================================================
* Send one empty static block to give enough lookahead for inflate.
* This takes 10 bits, of which 7 may remain in the bit buffer.
*/
voidZLIB_INTERNAL_tr_align(deflate_state*s) {
send_bits(s, STATIC_TREES<<1, 3);
send_code(s, END_BLOCK, static_ltree);
#ifdefZLIB_DEBUG
s->compressed_len+=10L; /* 3 for block type, 7 for EOB */
#endif
bi_flush(s);
}
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
localvoidcompress_block(deflate_state*s, constct_data*ltree,
constct_data*dtree) {
unsigneddist; /* distance of matched string */
intlc; /* match length or unmatched char (if dist == 0) */
unsignedsx=0; /* running index in symbol buffers */
unsignedcode; /* the code to send */
intextra; /* number of extra bits to send */
if (s->sym_next!=0) do {
#ifdefLIT_MEM
dist=s->d_buf[sx];
lc=s->l_buf[sx++];
#else
dist=s->sym_buf[sx++] &0xff;
dist+= (unsigned)(s->sym_buf[sx++] &0xff) << 8;
lc=s->sym_buf[sx++];
#endif
if (dist==0) {
send_code(s, lc, ltree); /* send a literal byte */
Tracecv(isgraph(lc), (stderr," '%c' ", lc));
} else {
/* Here, lc is the match length - MIN_MATCH */
code=_length_code[lc];
send_code(s, code+LITERALS+1, ltree); /* send length code */
extra=extra_lbits[code];
if (extra!=0) {
lc-=base_length[code];
send_bits(s, lc, extra); /* send the extra length bits */
}
dist--; /* dist is now the match distance - 1 */
code=d_code(dist);
Assert (code<D_CODES, "bad d_code");
send_code(s, code, dtree); /* send the distance code */
extra=extra_dbits[code];
if (extra!=0) {
dist-= (unsigned)base_dist[code];
send_bits(s, dist, extra); /* send the extra distance bits */
}
} /* literal or match pair ? */
/* Check for no overlay of pending_buf on needed symbols */
#ifdefLIT_MEM
Assert(s->pending<2* (s->lit_bufsize+sx), "pendingBuf overflow");
#else
Assert(s->pending<s->lit_bufsize+sx, "pendingBuf overflow");
#endif
} while (sx<s->sym_next);
send_code(s, END_BLOCK, ltree);
}
/* ===========================================================================
* Check if the data type is TEXT or BINARY, using the following algorithm:
* - TEXT if the two conditions below are satisfied:
* a) There are no non-portable control characters belonging to the
* "block list" (0..6, 14..25, 28..31).
* b) There is at least one printable character belonging to the
* "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
* - BINARY otherwise.
* - The following partially-portable control characters form a
* "gray list" that is ignored in this detection algorithm:
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
* IN assertion: the fields Freq of dyn_ltree are set.
*/
localintdetect_data_type(deflate_state*s) {
/* block_mask is the bit mask of block-listed bytes
* set bits 0..6, 14..25, and 28..31
* 0xf3ffc07f = binary 11110011111111111100000001111111
*/
unsigned longblock_mask=0xf3ffc07fUL;
intn;
/* Check for non-textual ("block-listed") bytes. */
for (n=0; n <= 31; n++, block_mask >>= 1)
if ((block_mask&1) && (s->dyn_ltree[n].Freq!=0))
returnZ_BINARY;