forked from TheAlgorithms/Python
- Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquick_select.py
62 lines (54 loc) · 1.7 KB
/
quick_select.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
"""
A Python implementation of the quick select algorithm, which is efficient for
calculating the value that would appear in the index of a list if it would be
sorted, even if it is not already sorted
https://en.wikipedia.org/wiki/Quickselect
"""
importrandom
def_partition(data: list, pivot) ->tuple:
"""
Three way partition the data into smaller, equal and greater lists,
in relationship to the pivot
:param data: The data to be sorted (a list)
:param pivot: The value to partition the data on
:return: Three list: smaller, equal and greater
"""
less, equal, greater= [], [], []
forelementindata:
ifelement<pivot:
less.append(element)
elifelement>pivot:
greater.append(element)
else:
equal.append(element)
returnless, equal, greater
defquick_select(items: list, index: int):
"""
>>> quick_select([2, 4, 5, 7, 899, 54, 32], 5)
54
>>> quick_select([2, 4, 5, 7, 899, 54, 32], 1)
4
>>> quick_select([5, 4, 3, 2], 2)
4
>>> quick_select([3, 5, 7, 10, 2, 12], 3)
7
"""
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
ifindex>=len(items) orindex<0:
returnNone
pivot=items[random.randint(0, len(items) -1)]
count=0
smaller, equal, larger=_partition(items, pivot)
count=len(equal)
m=len(smaller)
# index is the pivot
ifm<=index<m+count:
returnpivot
# must be in smaller
elifm>index:
returnquick_select(smaller, index)
# must be in larger
else:
returnquick_select(larger, index- (m+count))