forked from TheAlgorithms/Python
- Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsol2.py
47 lines (35 loc) · 1.08 KB
/
sol2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
Project Euler Problem 9: https://projecteuler.net/problem=9
Special Pythagorean triplet
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
a^2 + b^2 = c^2
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product a*b*c.
References:
- https://en.wikipedia.org/wiki/Pythagorean_triple
"""
defsolution(n: int=1000) ->int:
"""
Return the product of a,b,c which are Pythagorean Triplet that satisfies
the following:
1. a < b < c
2. a**2 + b**2 = c**2
3. a + b + c = n
>>> solution(36)
1620
>>> solution(126)
66780
"""
product=-1
candidate=0
forainrange(1, n//3):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
b= (n*n-2*a*n) // (2*n-2*a)
c=n-a-b
ifc*c== (a*a+b*b):
candidate=a*b*c
product=max(product, candidate)
returnproduct
if__name__=="__main__":
print(f"{solution() =}")