forked from TheAlgorithms/Python
- Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgermain_primes.py
72 lines (58 loc) · 1.85 KB
/
germain_primes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
A Sophie Germain prime is any prime p, where 2p + 1 is also prime.
The second number, 2p + 1 is called a safe prime.
Examples of Germain primes include: 2, 3, 5, 11, 23
Their corresponding safe primes: 5, 7, 11, 23, 47
https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes
"""
frommaths.prime_checkimportis_prime
defis_germain_prime(number: int) ->bool:
"""Checks if input number and 2*number + 1 are prime.
>>> is_germain_prime(3)
True
>>> is_germain_prime(11)
True
>>> is_germain_prime(4)
False
>>> is_germain_prime(23)
True
>>> is_germain_prime(13)
False
>>> is_germain_prime(20)
False
>>> is_germain_prime('abc')
Traceback (most recent call last):
...
TypeError: Input value must be a positive integer. Input value: abc
"""
ifnotisinstance(number, int) ornumber<1:
msg=f"Input value must be a positive integer. Input value: {number}"
raiseTypeError(msg)
returnis_prime(number) andis_prime(2*number+1)
defis_safe_prime(number: int) ->bool:
"""Checks if input number and (number - 1)/2 are prime.
The smallest safe prime is 5, with the Germain prime is 2.
>>> is_safe_prime(5)
True
>>> is_safe_prime(11)
True
>>> is_safe_prime(1)
False
>>> is_safe_prime(2)
False
>>> is_safe_prime(3)
False
>>> is_safe_prime(47)
True
>>> is_safe_prime('abc')
Traceback (most recent call last):
...
TypeError: Input value must be a positive integer. Input value: abc
"""
ifnotisinstance(number, int) ornumber<1:
msg=f"Input value must be a positive integer. Input value: {number}"
raiseTypeError(msg)
return (number-1) %2==0andis_prime(number) andis_prime((number-1) //2)
if__name__=="__main__":
fromdoctestimporttestmod
testmod()