forked from TheAlgorithms/Python
- Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcanny.py
143 lines (119 loc) · 5.28 KB
/
canny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
importcv2
importnumpyasnp
fromdigital_image_processing.filters.convolveimportimg_convolve
fromdigital_image_processing.filters.sobel_filterimportsobel_filter
PI=180
defgen_gaussian_kernel(k_size, sigma):
center=k_size//2
x, y=np.mgrid[0-center : k_size-center, 0-center : k_size-center]
g= (
1
/ (2*np.pi*sigma)
*np.exp(-(np.square(x) +np.square(y)) / (2*np.square(sigma)))
)
returng
defsuppress_non_maximum(image_shape, gradient_direction, sobel_grad):
"""
Non-maximum suppression. If the edge strength of the current pixel is the largest
compared to the other pixels in the mask with the same direction, the value will be
preserved. Otherwise, the value will be suppressed.
"""
destination=np.zeros(image_shape)
forrowinrange(1, image_shape[0] -1):
forcolinrange(1, image_shape[1] -1):
direction=gradient_direction[row, col]
if (
0<=direction<PI/8
or15*PI/8<=direction<=2*PI
or7*PI/8<=direction<=9*PI/8
):
w=sobel_grad[row, col-1]
e=sobel_grad[row, col+1]
ifsobel_grad[row, col] >=wandsobel_grad[row, col] >=e:
destination[row, col] =sobel_grad[row, col]
elif (
PI/8<=direction<3*PI/8
or9*PI/8<=direction<11*PI/8
):
sw=sobel_grad[row+1, col-1]
ne=sobel_grad[row-1, col+1]
ifsobel_grad[row, col] >=swandsobel_grad[row, col] >=ne:
destination[row, col] =sobel_grad[row, col]
elif (
3*PI/8<=direction<5*PI/8
or11*PI/8<=direction<13*PI/8
):
n=sobel_grad[row-1, col]
s=sobel_grad[row+1, col]
ifsobel_grad[row, col] >=nandsobel_grad[row, col] >=s:
destination[row, col] =sobel_grad[row, col]
elif (
5*PI/8<=direction<7*PI/8
or13*PI/8<=direction<15*PI/8
):
nw=sobel_grad[row-1, col-1]
se=sobel_grad[row+1, col+1]
ifsobel_grad[row, col] >=nwandsobel_grad[row, col] >=se:
destination[row, col] =sobel_grad[row, col]
returndestination
defdetect_high_low_threshold(
image_shape, destination, threshold_low, threshold_high, weak, strong
):
"""
High-Low threshold detection. If an edge pixel's gradient value is higher
than the high threshold value, it is marked as a strong edge pixel. If an
edge pixel's gradient value is smaller than the high threshold value and
larger than the low threshold value, it is marked as a weak edge pixel. If
an edge pixel's value is smaller than the low threshold value, it will be
suppressed.
"""
forrowinrange(1, image_shape[0] -1):
forcolinrange(1, image_shape[1] -1):
ifdestination[row, col] >=threshold_high:
destination[row, col] =strong
elifdestination[row, col] <=threshold_low:
destination[row, col] =0
else:
destination[row, col] =weak
deftrack_edge(image_shape, destination, weak, strong):
"""
Edge tracking. Usually a weak edge pixel caused from true edges will be connected
to a strong edge pixel while noise responses are unconnected. As long as there is
one strong edge pixel that is involved in its 8-connected neighborhood, that weak
edge point can be identified as one that should be preserved.
"""
forrowinrange(1, image_shape[0]):
forcolinrange(1, image_shape[1]):
ifdestination[row, col] ==weak:
if255in (
destination[row, col+1],
destination[row, col-1],
destination[row-1, col],
destination[row+1, col],
destination[row-1, col-1],
destination[row+1, col-1],
destination[row-1, col+1],
destination[row+1, col+1],
):
destination[row, col] =strong
else:
destination[row, col] =0
defcanny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
# gaussian_filter
gaussian_out=img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
# get the gradient and degree by sobel_filter
sobel_grad, sobel_theta=sobel_filter(gaussian_out)
gradient_direction=PI+np.rad2deg(sobel_theta)
destination=suppress_non_maximum(image.shape, gradient_direction, sobel_grad)
detect_high_low_threshold(
image.shape, destination, threshold_low, threshold_high, weak, strong
)
track_edge(image.shape, destination, weak, strong)
returndestination
if__name__=="__main__":
# read original image in gray mode
lena=cv2.imread(r"../image_data/lena.jpg", 0)
# canny edge detection
canny_destination=canny(lena)
cv2.imshow("canny", canny_destination)
cv2.waitKey(0)