forked from TheAlgorithms/Python
- Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkth_order_statistic.py
66 lines (53 loc) · 1.71 KB
/
kth_order_statistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""
Find the kth smallest element in linear time using divide and conquer.
Recall we can do this trivially in O(nlogn) time. Sort the list and
access kth element in constant time.
This is a divide and conquer algorithm that can find a solution in O(n) time.
For more information of this algorithm:
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/lectures/08/Small08.pdf
"""
from __future__ importannotations
fromrandomimportchoice
defrandom_pivot(lst):
"""
Choose a random pivot for the list.
We can use a more sophisticated algorithm here, such as the median-of-medians
algorithm.
"""
returnchoice(lst)
defkth_number(lst: list[int], k: int) ->int:
"""
Return the kth smallest number in lst.
>>> kth_number([2, 1, 3, 4, 5], 3)
3
>>> kth_number([2, 1, 3, 4, 5], 1)
1
>>> kth_number([2, 1, 3, 4, 5], 5)
5
>>> kth_number([3, 2, 5, 6, 7, 8], 2)
3
>>> kth_number([25, 21, 98, 100, 76, 22, 43, 60, 89, 87], 4)
43
"""
# pick a pivot and separate into list based on pivot.
pivot=random_pivot(lst)
# partition based on pivot
# linear time
small= [eforeinlstife<pivot]
big= [eforeinlstife>pivot]
# if we get lucky, pivot might be the element we want.
# we can easily see this:
# small (elements smaller than k)
# + pivot (kth element)
# + big (elements larger than k)
iflen(small) ==k-1:
returnpivot
# pivot is in elements bigger than k
eliflen(small) <k-1:
returnkth_number(big, k-len(small) -1)
# pivot is in elements smaller than k
else:
returnkth_number(small, k)
if__name__=="__main__":
importdoctest
doctest.testmod()