- Notifications
You must be signed in to change notification settings - Fork 397
/
Copy pathallskymap.py
394 lines (339 loc) · 16.2 KB
/
allskymap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from __future__ import (absolute_import, division, print_function)
from __future__ importunicode_literals
"""
AllSkyMap is a subclass of Basemap, specialized for handling common plotting
tasks for celestial data.
It is essentially equivalent to using Basemap with full-sphere projections
(e.g., 'hammer' or 'moll') and the `celestial` keyword set to `True`, but
it adds a few new methods:
* label_meridians for, well, labeling meridians with their longitude values;
* geodesic, a replacement for Basemap.drawgreatcircle, that can correctly
handle geodesics that cross the limb of the map, and providing the user
easy control over clipping (which affects thick lines at or near the limb);
* tissot, which overrides Basemap.tissot, correctly handling geodesics that
cross the limb of the map.
Created Jan 2011 by Tom Loredo, based on Jeff Whitaker's code in Basemap's
__init__.py module.
"""
fromnumpyimport*
importmatplotlib.pyplotaspl
frommatplotlib.pyplotimport*
frommpl_toolkits.basemapimportBasemap
importpyproj
frompyprojimportGeod
__all__= ['AllSkyMap']
defangle_symbol(angle, round_to=1.0):
"""
Return a string representing an angle, rounded and with a degree symbol.
This is adapted from code in mpl's projections.geo module.
"""
value=np.round(angle/round_to) *round_to
ifpl.rcParams['text.usetex'] andnotpl.rcParams['text.latex.unicode']:
returnr'$%0.0f^\circ$'%value
else:
return'%0.0f\N{DEGREE SIGN}'%value
classAllSkyMap(Basemap):
"""
AllSkyMap is a subclass of Basemap, specialized for handling common plotting
tasks for celestial data.
It is essentially equivalent to using Basemap with full-sphere projections
(e.g., 'hammer' or 'moll') and the `celestial` keyword set to `True`, but
it adds a few new methods:
* label_meridians for, well, labeling meridians with their longitude values;
* geodesic, a replacement for Basemap.drawgreatcircle, that can correctly
handle geodesics that cross the limb of the map, and providing the user
easy control over clipping (which affects thick lines at or near the
limb);
* tissot, which overrides Basemap.tissot, correctly handling geodesics that
cross the limb of the map.
"""
# Longitudes corresponding to east and west edges, reflecting the
# convention that 180 deg is the eastern edge, according to basemap's
# underlying projections:
east_lon=180.
west_lon=180.+1.e-10
def__init__(self,
projection='hammer',
lat_0=0., lon_0=0.,
suppress_ticks=True,
boundinglat=None,
fix_aspect=True,
anchor=str('C'),
ax=None):
ifprojection!='hammer'andprojection!='moll':
raiseValueError('Only hammer and moll projections supported!')
# Use Basemap's init, enforcing the values of many parameters that
# aren't used or whose Basemap defaults would not be altered for all-sky
# celestial maps.
Basemap.__init__(self, llcrnrlon=None, llcrnrlat=None,
urcrnrlon=None, urcrnrlat=None,
llcrnrx=None, llcrnry=None,
urcrnrx=None, urcrnry=None,
width=None, height=None,
projection=projection, resolution=None,
area_thresh=None, rsphere=1.,
lat_ts=None,
lat_1=None, lat_2=None,
lat_0=lat_0, lon_0=lon_0,
suppress_ticks=suppress_ticks,
satellite_height=1.,
boundinglat=None,
fix_aspect=True,
anchor=anchor,
celestial=True,
ax=ax)
# Keep a local ref to lon_0 for hemisphere checking.
self._lon_0=self.projparams['lon_0']
self._limb=None
defdrawmapboundary(self,color='k',linewidth=1.0,fill_color=None,\
zorder=None,ax=None):
"""
draw boundary around map projection region, optionally
filling interior of region.
.. tabularcolumns:: |l|L|
============== ====================================================
Keyword Description
============== ====================================================
linewidth line width for boundary (default 1.)
color color of boundary line (default black)
fill_color fill the map region background with this
color (default is no fill or fill with axis
background color).
zorder sets the zorder for filling map background
(default 0).
ax axes instance to use
(default None, use default axes instance).
============== ====================================================
returns matplotlib.collections.PatchCollection representing map boundary.
"""
# Just call the base class version, but keep a copy of the limb
# polygon for clipping.
self._limb=Basemap.drawmapboundary(self, color=color,
linewidth=linewidth, fill_color=fill_color, zorder=zorder, ax=ax)
returnself._limb
deflabel_meridians(self, lons, fontsize=10, valign='bottom', vnudge=0,
halign='center', hnudge=0):
"""
Label meridians with their longitude values in degrees.
This labels meridians with negative longitude l with the value 360-l;
for maps in celestial orientation, this means meridians to the right
of the central meridian are labeled from 360 to 180 (left to right).
`vnudge` and `hnudge` specify amounts in degress to nudge the labels
from their default placements, vertically and horizontally. This
values obey the map orientation, so to nudge to the right, use a
negative `hnudge` value.
"""
# Run through (lon, lat) pairs, with lat=0 in each pair.
lats=len(lons)*[0.]
forlon,latinzip(lons, lats):
x, y=self(lon+hnudge, lat+vnudge)
iflon<0:
lon_lbl=360+lon
else:
lon_lbl=lon
pl.text(x, y, angle_symbol(lon_lbl), fontsize=fontsize,
verticalalignment=valign,
horizontalalignment=halign)
defeast_hem(self, lon):
"""
Return True if lon is in the eastern hemisphere of the map wrt lon_0.
"""
if (lon-self._lon_0) %360.<=self.east_lon:
returnTrue
else:
returnFalse
defgeodesic(self, lon1, lat1, lon2, lat2, del_s=.01, clip=True, **kwargs):
"""
Plot a geodesic curve from (lon1, lat1) to (lon2, lat2), with
points separated by arc length del_s. Return a list of Line2D
instances for the curves comprising the geodesic. If the geodesic does
not cross the map limb, there will be only a single curve; if it
crosses the limb, there will be two curves.
"""
# TODO: Perhaps return a single Line2D instance when there is only a
# single segment, and a list of segments only when there are two segs?
# TODO: Check the units of del_s.
# This is based on Basemap.drawgreatcircle (which draws an *arc* of a
# great circle), but addresses a limitation of that method, supporting
# geodesics that cross the map boundary by breaking them into two
# segments, one in the eastern hemisphere and the other in the western.
gc=pyproj.Geod(a=self.rmajor,b=self.rminor)
az12,az21,dist=gc.inv(lon1,lat1,lon2,lat2)
npoints=int((dist+0.5**del_s)/del_s)
# Calculate lon & lat for points on the arc.
lonlats=gc.npts(lon1,lat1,lon2,lat2,npoints)
lons= [lon1]; lats= [lat1]
forlon, latinlonlats:
lons.append(lon)
lats.append(lat)
lons.append(lon2); lats.append(lat2)
# Break the arc into segments as needed, when there is a longitudinal
# hemisphere crossing.
segs= []
seg_lons, seg_lats= [lon1], [lat1]
cur_hem=self.east_hem(lon1)
forlon, latinzip(lons[1:], lats[1:]):
ifself.east_hem(lon) ==cur_hem:
seg_lons.append(lon)
seg_lats.append(lat)
else:
# We should interpolate a new pt at the boundary, but in
# the mean time just rely on the step size being small.
segs.append( (seg_lons, seg_lats) )
seg_lons, seg_lats= [lon], [lat]
cur_hem=notcur_hem
segs.append( (seg_lons, seg_lats) )
# Plot each segment; return a list of the mpl lines.
lines= []
forlons, latsinsegs:
x, y=self(lons, lats)
ifclipandself._limb:
line=plot(x, y, clip_path=self._limb, **kwargs)[0]
else:
line=plot(x, y, **kwargs)[0]
lines.append(line)
# If there are multiple segments and no color args, reconcile the
# colors, which mpl will have autoset to different values.
# *** Does this screw up mpl's color set sequence for later lines?
if'c'notinkwargsor'color'inkwargs:
iflen(lines) >1:
c1=lines[0].get_color()
forlineinlines[1:]:
line.set_color(c1)
returnlines
deftissot(self,lon_0,lat_0,radius_deg,npts,ax=None,**kwargs):
"""
Draw a polygon centered at ``lon_0,lat_0``. The polygon
approximates a circle on the surface of the earth with radius
``radius_deg`` degrees latitude along longitude ``lon_0``,
made up of ``npts`` vertices.
The polygon represents a Tissot's indicatrix
(http://en.wikipedia.org/wiki/Tissot's_Indicatrix),
which when drawn on a map shows the distortion inherent in the map
projection. Tissots can be used to display azimuthally symmetric
directional uncertainties ("error circles").
Extra keyword ``ax`` can be used to override the default axis instance.
Other \**kwargs passed on to matplotlib.patches.Polygon.
returns a list of matplotlib.patches.Polygon objects, with two polygons
when the tissot crosses the limb, and just one polygon otherwise.
"""
# TODO: Just return the polygon (not a list) when there is only one
# polygon? Or stick with the list for consistency?
# This is based on Basemap.tissot, but addresses a limitation of that
# method by handling tissots that cross the limb of the map by finding
# separate polygons in the eastern and western hemispheres comprising
# the tissot.
ax=kwargs.pop('ax', None) orself._check_ax()
g=pyproj.Geod(a=self.rmajor,b=self.rminor)
az12,az21,dist=g.inv(lon_0,lat_0,lon_0,lat_0+radius_deg)
start_hem=self.east_hem(lon_0)
segs1= [self(lon_0,lat_0+radius_deg)]
over, segs2= [], []
delaz=360./npts
az=az12
last_lon=lon_0
# Note adjacent and opposite edge longitudes, in case the tissot
# runs over the edge.
ifstart_hem: # eastern case
adj_lon=self.east_lon
opp_lon=self.west_lon
else:
adj_lon=self.west_lon
opp_lon=self.east_lon
forninrange(npts):
az=az+delaz
# skip segments along equator (Geod can't handle equatorial arcs)
ifnp.allclose(0.,lat_0) and (np.allclose(90.,az) ornp.allclose(270.,az)):
continue
else:
lon, lat, az21=g.fwd(lon_0, lat_0, az, dist)
# If in the starting hemisphere, add to 1st polygon seg list.
ifself.east_hem(lon) ==start_hem:
x, y=self(lon, lat)
# Add segment if it is in the map projection region.
ifx<1.e20andy<1.e20:
segs1.append( (x, y) )
last_lon=lon
# Otherwise, we cross hemispheres.
else:
# Trace the edge of each hemisphere.
x, y=self(adj_lon, lat)
ifx<1.e20andy<1.e20:
segs1.append( (x, y) )
# We presume if adj projection is okay, opposite is.
segs2.append( self(opp_lon, lat) )
# Also store the overlap in the opposite hemisphere.
x, y=self(lon, lat)
ifx<1.e20andy<1.e20:
over.append( (x, y) )
last_lon=lon
poly1=Polygon(segs1, **kwargs)
ax.add_patch(poly1)
ifsegs2:
over.reverse()
segs2.extend(over)
poly2=Polygon(segs2, **kwargs)
ax.add_patch(poly2)
return [poly1, poly2]
else:
return [poly1]
if__name__=='__main__':
# Note that Hammer & Mollweide projections enforce a 2:1 aspect ratio.
# Use figure size good for a 2:1 plot.
fig=figure(figsize=(12,6))
# Set up the projection and draw a grid.
map=AllSkyMap(projection='hammer')
# Save the bounding limb to use as a clip path later.
limb=map.drawmapboundary(fill_color='white')
map.drawparallels(np.arange(-75,76,15), linewidth=0.5, dashes=[1,2],
labels=[1,0,0,0], fontsize=9)
map.drawmeridians(np.arange(-150,151,30), linewidth=0.5, dashes=[1,2])
# Label a subset of meridians.
lons=np.arange(-150,151,30)
map.label_meridians(lons, fontsize=9, vnudge=1,
halign='left', hnudge=-1) # hnudge<0 shifts to right
# x, y limits are [0, 4*rt2], [0, 2*rt2].
rt2=sqrt(2)
# Draw a slanted green line crossing the map limb.
line=plot([rt2,0], [rt2,2*rt2], 'g-')
# Draw a slanted magenta line crossing the map limb but clipped.
line=plot([rt2+.1,0+.1], [rt2,2*rt2], 'm-', clip_path=limb)
# Draw some geodesics.
# First a transparent thick blue geodesic crossing the limb but not clipped,
# overlayed by a thinner red geodesic that is clipped (by default), to
# illustrate the effect of clipping.
lines=map.geodesic(120, 30, 240, 60, clip=False, c='b', lw=7, alpha=.5)
lines=map.geodesic(240, 60, 120, 30, c='r', lw=3, alpha=.5)
# Next two large limb-crossing geodesics with the same path, but rendered
# in opposite directions, one transparent blue, the other transparent
# yellow. They should be right on top of each other, giving a greenish
# brown hue.
lines=map.geodesic(240, -60, 120, 30, c='b', lw=2, alpha=.5)
lines=map.geodesic(120, 30, 240, -60, c='y', lw=2, alpha=.5)
# What happens if a geodesic is given coordinates spanning more than
# a single rotation? Not sure what to expect, but it shoots off the
# map (clipped here). Perhaps we should ensure lons are in [0, 360].
#lines = map.geodesic(120, 20, 240+360, 50, del_s=.2, c='g')
# Two tissots fully within the limb.
poly=map.tissot(60, -15, 10, 100)
poly=map.tissot(280, 60, 10, 100)
#poly = map.tissot(90, -85, 10, 100)
# Limb-spanning tissots in each quadrant.
# lower left:
poly=map.tissot(170, -60, 15, 100)
# upper left:
poly=map.tissot(175, 70, 15, 100)
# upper right (note negative longitude):
poly=map.tissot(-175, 30, 15, 100, color='r', alpha=.6)
# lower right:
poly=map.tissot(185, -40, 10, 100)
# Plot the tissot centers as "+" symbols. Note the top left symbol
# would cross the limb without the clip_path argument; this might be
# desired to enhance visibility.
lons= [170, 175, -175, 185]
lats= [-60, 70, 30, -40]
x, y=map(lons, lats)
map.scatter(x, y, s=40, marker='+', linewidths=1, edgecolors='g',
facecolors='none', clip_path=limb, zorder=10) # hi zorder -> top
title('AllSkyMap demo: Clipped lines, markers, geodesics, tissots')
show()