- Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathReorderAlgorithm.cpp
778 lines (677 loc) · 26.8 KB
/
ReorderAlgorithm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
//===- bolt/Passes/ReorderAlgorithm.cpp - Basic block reordering ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements classes used by several basic block reordering
// algorithms.
//
//===----------------------------------------------------------------------===//
#include"bolt/Passes/ReorderAlgorithm.h"
#include"bolt/Core/BinaryBasicBlock.h"
#include"bolt/Core/BinaryFunction.h"
#include"llvm/Support/CommandLine.h"
#include"llvm/Transforms/Utils/CodeLayout.h"
#include<queue>
#include<random>
#include<stack>
#undef DEBUG_TYPE
#defineDEBUG_TYPE"bolt"
usingnamespacellvm;
usingnamespacebolt;
namespaceopts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<bool> NoThreads;
static cl::opt<unsigned> ColdThreshold(
"cold-threshold",
cl::desc("tenths of percents of main entry frequency to use as a "
"threshold when evaluating whether a basic block is cold "
"(0 means it is only considered cold if the block has zero "
"samples). Default: 0 "),
cl::init(0), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool> PrintClusters("print-clusters", cl::desc("print clusters"),
cl::Hidden, cl::cat(BoltOptCategory));
cl::opt<uint32_t> RandomSeed("bolt-seed", cl::desc("seed for randomization"),
cl::init(42), cl::Hidden,
cl::cat(BoltOptCategory));
} // namespace opts
namespace {
template <classT> inlinevoidhashCombine(size_t &Seed, const T &Val) {
std::hash<T> Hasher;
Seed ^= Hasher(Val) + 0x9e3779b9 + (Seed << 6) + (Seed >> 2);
}
template <typename A, typename B> structHashPair {
size_toperator()(const std::pair<A, B> &Val) const {
std::hash<A> Hasher;
size_t Seed = Hasher(Val.first);
hashCombine(Seed, Val.second);
return Seed;
}
};
} // namespace
voidClusterAlgorithm::computeClusterAverageFrequency(const BinaryContext &BC) {
// Create a separate MCCodeEmitter to allow lock-free execution
BinaryContext::IndependentCodeEmitter Emitter;
if (!opts::NoThreads)
Emitter = BC.createIndependentMCCodeEmitter();
AvgFreq.resize(Clusters.size(), 0.0);
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
double Freq = 0.0;
uint64_t ClusterSize = 0;
for (const BinaryBasicBlock *BB : Clusters[I]) {
if (BB->getNumNonPseudos() > 0) {
Freq += BB->getExecutionCount();
// Estimate the size of a block in bytes at run time
// NOTE: This might be inaccurate
ClusterSize += BB->estimateSize(Emitter.MCE.get());
}
}
AvgFreq[I] = ClusterSize == 0 ? 0 : Freq / ClusterSize;
}
}
voidClusterAlgorithm::printClusters() const {
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
errs() << "Cluster number " << I;
if (AvgFreq.size() == Clusters.size())
errs() << " (frequency: " << AvgFreq[I] << ")";
errs() << " : ";
constchar *Sep = "";
for (const BinaryBasicBlock *BB : Clusters[I]) {
errs() << Sep << BB->getName();
Sep = ", ";
}
errs() << "\n";
}
}
voidClusterAlgorithm::reset() {
Clusters.clear();
ClusterEdges.clear();
AvgFreq.clear();
}
voidGreedyClusterAlgorithm::EdgeTy::print(raw_ostream &OS) const {
OS << Src->getName() << " -> " << Dst->getName() << ", count: " << Count;
}
size_tGreedyClusterAlgorithm::EdgeHash::operator()(const EdgeTy &E) const {
HashPair<const BinaryBasicBlock *, const BinaryBasicBlock *> Hasher;
returnHasher(std::make_pair(E.Src, E.Dst));
}
boolGreedyClusterAlgorithm::EdgeEqual::operator()(const EdgeTy &A,
const EdgeTy &B) const {
return A.Src == B.Src && A.Dst == B.Dst;
}
voidGreedyClusterAlgorithm::clusterBasicBlocks(BinaryFunction &BF,
bool ComputeEdges) {
reset();
// Greedy heuristic implementation for the TSP, applied to BB layout. Try to
// maximize weight during a path traversing all BBs. In this way, we will
// convert the hottest branches into fall-throughs.
// This is the queue of edges from which we will pop edges and use them to
// cluster basic blocks in a greedy fashion.
std::vector<EdgeTy> Queue;
// Initialize inter-cluster weights.
if (ComputeEdges)
ClusterEdges.resize(BF.getLayout().block_size());
// Initialize clusters and edge queue.
for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
// Create a cluster for this BB.
uint32_t I = Clusters.size();
Clusters.emplace_back();
std::vector<BinaryBasicBlock *> &Cluster = Clusters.back();
Cluster.push_back(BB);
BBToClusterMap[BB] = I;
// Populate priority queue with edges.
auto BI = BB->branch_info_begin();
for (const BinaryBasicBlock *I : BB->successors()) {
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
"attempted reordering blocks of function with no profile data");
Queue.emplace_back(EdgeTy(BB, I, BI->Count));
++BI;
}
}
// Sort and adjust the edge queue.
initQueue(Queue, BF);
// Grow clusters in a greedy fashion.
while (!Queue.empty()) {
EdgeTy E = Queue.back();
Queue.pop_back();
const BinaryBasicBlock *SrcBB = E.Src;
const BinaryBasicBlock *DstBB = E.Dst;
LLVM_DEBUG(dbgs() << "Popped edge "; E.print(dbgs()); dbgs() << "\n");
// Case 1: BBSrc and BBDst are the same. Ignore this edge
if (SrcBB == DstBB || DstBB == *BF.getLayout().block_begin()) {
LLVM_DEBUG(dbgs() << "\tIgnored (same src, dst)\n");
continue;
}
int I = BBToClusterMap[SrcBB];
int J = BBToClusterMap[DstBB];
// Case 2: If they are already allocated at the same cluster, just increase
// the weight of this cluster
if (I == J) {
if (ComputeEdges)
ClusterEdges[I][I] += E.Count;
LLVM_DEBUG(dbgs() << "\tIgnored (src, dst belong to the same cluster)\n");
continue;
}
std::vector<BinaryBasicBlock *> &ClusterA = Clusters[I];
std::vector<BinaryBasicBlock *> &ClusterB = Clusters[J];
if (areClustersCompatible(ClusterA, ClusterB, E)) {
// Case 3: SrcBB is at the end of a cluster and DstBB is at the start,
// allowing us to merge two clusters.
for (const BinaryBasicBlock *BB : ClusterB)
BBToClusterMap[BB] = I;
ClusterA.insert(ClusterA.end(), ClusterB.begin(), ClusterB.end());
ClusterB.clear();
if (ComputeEdges) {
// Increase the intra-cluster edge count of cluster A with the count of
// this edge as well as with the total count of previously visited edges
// from cluster B cluster A.
ClusterEdges[I][I] += E.Count;
ClusterEdges[I][I] += ClusterEdges[J][I];
// Iterate through all inter-cluster edges and transfer edges targeting
// cluster B to cluster A.
for (uint32_t K = 0, E = ClusterEdges.size(); K != E; ++K)
ClusterEdges[K][I] += ClusterEdges[K][J];
}
// Adjust the weights of the remaining edges and re-sort the queue.
adjustQueue(Queue, BF);
LLVM_DEBUG(dbgs() << "\tMerged clusters of src, dst\n");
} else {
// Case 4: Both SrcBB and DstBB are allocated in positions we cannot
// merge them. Add the count of this edge to the inter-cluster edge count
// between clusters A and B to help us decide ordering between these
// clusters.
if (ComputeEdges)
ClusterEdges[I][J] += E.Count;
LLVM_DEBUG(
dbgs() << "\tIgnored (src, dst belong to incompatible clusters)\n");
}
}
}
voidGreedyClusterAlgorithm::reset() {
ClusterAlgorithm::reset();
BBToClusterMap.clear();
}
voidPHGreedyClusterAlgorithm::initQueue(std::vector<EdgeTy> &Queue,
const BinaryFunction &BF) {
// Define a comparison function to establish SWO between edges.
auto Comp = [&BF](const EdgeTy &A, const EdgeTy &B) {
// With equal weights, prioritize branches with lower index
// source/destination. This helps to keep original block order for blocks
// when optimal order cannot be deducted from a profile.
if (A.Count == B.Count) {
constsigned SrcOrder = BF.getOriginalLayoutRelativeOrder(A.Src, B.Src);
return (SrcOrder != 0)
? SrcOrder > 0
: BF.getOriginalLayoutRelativeOrder(A.Dst, B.Dst) > 0;
}
return A.Count < B.Count;
};
// Sort edges in increasing profile count order.
llvm::sort(Queue, Comp);
}
voidPHGreedyClusterAlgorithm::adjustQueue(std::vector<EdgeTy> &Queue,
const BinaryFunction &BF) {
// Nothing to do.
}
boolPHGreedyClusterAlgorithm::areClustersCompatible(const ClusterTy &Front,
const ClusterTy &Back,
const EdgeTy &E) const {
return Front.back() == E.Src && Back.front() == E.Dst;
}
int64_tMinBranchGreedyClusterAlgorithm::calculateWeight(
const EdgeTy &E, const BinaryFunction &BF) const {
const BinaryBasicBlock *SrcBB = E.Src;
const BinaryBasicBlock *DstBB = E.Dst;
// Initial weight value.
int64_t W = (int64_t)E.Count;
// Adjust the weight by taking into account other edges with the same source.
auto BI = SrcBB->branch_info_begin();
for (const BinaryBasicBlock *SuccBB : SrcBB->successors()) {
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
"attempted reordering blocks of function with no profile data");
assert(BI->Count <= std::numeric_limits<int64_t>::max() &&
"overflow detected");
// Ignore edges with same source and destination, edges that target the
// entry block as well as the edge E itself.
if (SuccBB != SrcBB && SuccBB != *BF.getLayout().block_begin() &&
SuccBB != DstBB)
W -= (int64_t)BI->Count;
++BI;
}
// Adjust the weight by taking into account other edges with the same
// destination.
for (const BinaryBasicBlock *PredBB : DstBB->predecessors()) {
// Ignore edges with same source and destination as well as the edge E
// itself.
if (PredBB == DstBB || PredBB == SrcBB)
continue;
auto BI = PredBB->branch_info_begin();
for (const BinaryBasicBlock *SuccBB : PredBB->successors()) {
if (SuccBB == DstBB)
break;
++BI;
}
assert(BI != PredBB->branch_info_end() && "invalid control flow graph");
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
"attempted reordering blocks of function with no profile data");
assert(BI->Count <= std::numeric_limits<int64_t>::max() &&
"overflow detected");
W -= (int64_t)BI->Count;
}
return W;
}
voidMinBranchGreedyClusterAlgorithm::initQueue(std::vector<EdgeTy> &Queue,
const BinaryFunction &BF) {
// Initialize edge weights.
for (const EdgeTy &E : Queue)
Weight.emplace(std::make_pair(E, calculateWeight(E, BF)));
// Sort edges in increasing weight order.
adjustQueue(Queue, BF);
}
voidMinBranchGreedyClusterAlgorithm::adjustQueue(std::vector<EdgeTy> &Queue,
const BinaryFunction &BF) {
// Define a comparison function to establish SWO between edges.
auto Comp = [&](const EdgeTy &A, const EdgeTy &B) {
// With equal weights, prioritize branches with lower index
// source/destination. This helps to keep original block order for blocks
// when optimal order cannot be deduced from a profile.
if (Weight[A] == Weight[B]) {
constsigned SrcOrder = BF.getOriginalLayoutRelativeOrder(A.Src, B.Src);
return (SrcOrder != 0)
? SrcOrder > 0
: BF.getOriginalLayoutRelativeOrder(A.Dst, B.Dst) > 0;
}
return Weight[A] < Weight[B];
};
// Iterate through all remaining edges to find edges that have their
// source and destination in the same cluster.
std::vector<EdgeTy> NewQueue;
for (const EdgeTy &E : Queue) {
const BinaryBasicBlock *SrcBB = E.Src;
const BinaryBasicBlock *DstBB = E.Dst;
// Case 1: SrcBB and DstBB are the same or DstBB is the entry block. Ignore
// this edge.
if (SrcBB == DstBB || DstBB == *BF.getLayout().block_begin()) {
LLVM_DEBUG(dbgs() << "\tAdjustment: Ignored edge "; E.print(dbgs());
dbgs() << " (same src, dst)\n");
continue;
}
int I = BBToClusterMap[SrcBB];
int J = BBToClusterMap[DstBB];
std::vector<BinaryBasicBlock *> &ClusterA = Clusters[I];
std::vector<BinaryBasicBlock *> &ClusterB = Clusters[J];
// Case 2: They are already allocated at the same cluster or incompatible
// clusters. Adjust the weights of edges with the same source or
// destination, so that this edge has no effect on them any more, and ignore
// this edge. Also increase the intra- (or inter-) cluster edge count.
if (I == J || !areClustersCompatible(ClusterA, ClusterB, E)) {
if (!ClusterEdges.empty())
ClusterEdges[I][J] += E.Count;
LLVM_DEBUG(dbgs() << "\tAdjustment: Ignored edge "; E.print(dbgs());
dbgs() << " (src, dst belong to same cluster or incompatible "
"clusters)\n");
for (const BinaryBasicBlock *SuccBB : SrcBB->successors()) {
if (SuccBB == DstBB)
continue;
auto WI = Weight.find(EdgeTy(SrcBB, SuccBB, 0));
assert(WI != Weight.end() && "CFG edge not found in Weight map");
WI->second += (int64_t)E.Count;
}
for (const BinaryBasicBlock *PredBB : DstBB->predecessors()) {
if (PredBB == SrcBB)
continue;
auto WI = Weight.find(EdgeTy(PredBB, DstBB, 0));
assert(WI != Weight.end() && "CFG edge not found in Weight map");
WI->second += (int64_t)E.Count;
}
continue;
}
// Case 3: None of the previous cases is true, so just keep this edge in
// the queue.
NewQueue.emplace_back(E);
}
// Sort remaining edges in increasing weight order.
Queue.swap(NewQueue);
llvm::sort(Queue, Comp);
}
boolMinBranchGreedyClusterAlgorithm::areClustersCompatible(
const ClusterTy &Front, const ClusterTy &Back, const EdgeTy &E) const {
return Front.back() == E.Src && Back.front() == E.Dst;
}
voidMinBranchGreedyClusterAlgorithm::reset() {
GreedyClusterAlgorithm::reset();
Weight.clear();
}
voidTSPReorderAlgorithm::reorderBasicBlocks(BinaryFunction &BF,
BasicBlockOrder &Order) const {
std::vector<std::vector<uint64_t>> Weight;
std::vector<BinaryBasicBlock *> IndexToBB;
constsize_t N = BF.getLayout().block_size();
assert(N <= std::numeric_limits<uint64_t>::digits &&
"cannot use TSP solution for sizes larger than bits in uint64_t");
// Populating weight map and index map
for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
BB->setLayoutIndex(IndexToBB.size());
IndexToBB.push_back(BB);
}
Weight.resize(N);
for (const BinaryBasicBlock *BB : BF.getLayout().blocks()) {
auto BI = BB->branch_info_begin();
Weight[BB->getLayoutIndex()].resize(N);
for (BinaryBasicBlock *SuccBB : BB->successors()) {
if (BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE)
Weight[BB->getLayoutIndex()][SuccBB->getLayoutIndex()] = BI->Count;
++BI;
}
}
std::vector<std::vector<int64_t>> DP;
DP.resize(static_cast<size_t>(1) << N);
for (std::vector<int64_t> &Elmt : DP)
Elmt.resize(N, -1);
// Start with the entry basic block being allocated with cost zero
DP[1][0] = 0;
// Walk through TSP solutions using a bitmask to represent state (current set
// of BBs in the layout)
uint64_t BestSet = 1;
uint64_t BestLast = 0;
int64_t BestWeight = 0;
for (uint64_t Set = 1; Set < (1ULL << N); ++Set) {
// Traverse each possibility of Last BB visited in this layout
for (uint64_t Last = 0; Last < N; ++Last) {
// Case 1: There is no possible layout with this BB as Last
if (DP[Set][Last] == -1)
continue;
// Case 2: There is a layout with this Set and this Last, and we try
// to expand this set with New
for (uint64_t New = 1; New < N; ++New) {
// Case 2a: BB "New" is already in this Set
if ((Set & (1ULL << New)) != 0)
continue;
// Case 2b: BB "New" is not in this set and we add it to this Set and
// record total weight of this layout with "New" as the last BB.
uint64_t NewSet = (Set | (1ULL << New));
if (DP[NewSet][New] == -1)
DP[NewSet][New] = DP[Set][Last] + (int64_t)Weight[Last][New];
DP[NewSet][New] = std::max(DP[NewSet][New],
DP[Set][Last] + (int64_t)Weight[Last][New]);
if (DP[NewSet][New] > BestWeight) {
BestWeight = DP[NewSet][New];
BestSet = NewSet;
BestLast = New;
}
}
}
}
// Define final function layout based on layout that maximizes weight
uint64_t Last = BestLast;
uint64_t Set = BestSet;
BitVector Visited;
Visited.resize(N);
Visited[Last] = true;
Order.push_back(IndexToBB[Last]);
Set = Set & ~(1ULL << Last);
while (Set != 0) {
int64_t Best = -1;
uint64_t NewLast;
for (uint64_t I = 0; I < N; ++I) {
if (DP[Set][I] == -1)
continue;
int64_t AdjWeight = Weight[I][Last] > 0 ? Weight[I][Last] : 0;
if (DP[Set][I] + AdjWeight > Best) {
NewLast = I;
Best = DP[Set][I] + AdjWeight;
}
}
Last = NewLast;
Visited[Last] = true;
Order.push_back(IndexToBB[Last]);
Set = Set & ~(1ULL << Last);
}
std::reverse(Order.begin(), Order.end());
// Finalize layout with BBs that weren't assigned to the layout using the
// input layout.
for (BinaryBasicBlock *BB : BF.getLayout().blocks())
if (Visited[BB->getLayoutIndex()] == false)
Order.push_back(BB);
}
voidExtTSPReorderAlgorithm::reorderBasicBlocks(BinaryFunction &BF,
BasicBlockOrder &Order) const {
if (BF.getLayout().block_empty())
return;
// Do not change layout of functions w/o profile information
if (!BF.hasValidProfile() || BF.getLayout().block_size() <= 2) {
for (BinaryBasicBlock *BB : BF.getLayout().blocks())
Order.push_back(BB);
return;
}
// Create a separate MCCodeEmitter to allow lock-free execution
BinaryContext::IndependentCodeEmitter Emitter;
if (!opts::NoThreads)
Emitter = BF.getBinaryContext().createIndependentMCCodeEmitter();
// Initialize CFG nodes and their data
std::vector<uint64_t> BlockSizes;
std::vector<uint64_t> BlockCounts;
BasicBlockOrder OrigOrder;
BF.getLayout().updateLayoutIndices();
for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
uint64_tSize = std::max<uint64_t>(BB->estimateSize(Emitter.MCE.get()), 1);
BlockSizes.push_back(Size);
BlockCounts.push_back(BB->getKnownExecutionCount());
OrigOrder.push_back(BB);
}
// Initialize CFG edges
std::vector<codelayout::EdgeCount> JumpCounts;
for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
auto BI = BB->branch_info_begin();
for (BinaryBasicBlock *SuccBB : BB->successors()) {
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
"missing profile for a jump");
JumpCounts.push_back(
{BB->getLayoutIndex(), SuccBB->getLayoutIndex(), BI->Count});
++BI;
}
}
// Run the layout algorithm
auto Result =
codelayout::computeExtTspLayout(BlockSizes, BlockCounts, JumpCounts);
Order.reserve(BF.getLayout().block_size());
for (uint64_t R : Result)
Order.push_back(OrigOrder[R]);
}
voidOptimizeReorderAlgorithm::reorderBasicBlocks(
BinaryFunction &BF, BasicBlockOrder &Order) const {
if (BF.getLayout().block_empty())
return;
// Cluster basic blocks.
CAlgo->clusterBasicBlocks(BF);
if (opts::PrintClusters)
CAlgo->printClusters();
// Arrange basic blocks according to clusters.
for (ClusterAlgorithm::ClusterTy &Cluster : CAlgo->Clusters)
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
}
voidOptimizeBranchReorderAlgorithm::reorderBasicBlocks(
BinaryFunction &BF, BasicBlockOrder &Order) const {
if (BF.getLayout().block_empty())
return;
// Cluster basic blocks.
CAlgo->clusterBasicBlocks(BF, /* ComputeEdges = */true);
std::vector<ClusterAlgorithm::ClusterTy> &Clusters = CAlgo->Clusters;
std::vector<std::unordered_map<uint32_t, uint64_t>> &ClusterEdges =
CAlgo->ClusterEdges;
// Compute clusters' average frequencies.
CAlgo->computeClusterAverageFrequency(BF.getBinaryContext());
std::vector<double> &AvgFreq = CAlgo->AvgFreq;
if (opts::PrintClusters)
CAlgo->printClusters();
// Cluster layout order
std::vector<uint32_t> ClusterOrder;
// Do a topological sort for clusters, prioritizing frequently-executed BBs
// during the traversal.
std::stack<uint32_t> Stack;
std::vector<uint32_t> Status;
std::vector<uint32_t> Parent;
Status.resize(Clusters.size(), 0);
Parent.resize(Clusters.size(), 0);
constexpruint32_t STACKED = 1;
constexpruint32_t VISITED = 2;
Status[0] = STACKED;
Stack.push(0);
while (!Stack.empty()) {
uint32_t I = Stack.top();
if (!(Status[I] & VISITED)) {
Status[I] |= VISITED;
// Order successors by weight
auto ClusterComp = [&ClusterEdges, I](uint32_t A, uint32_t B) {
return ClusterEdges[I][A] > ClusterEdges[I][B];
};
std::priority_queue<uint32_t, std::vector<uint32_t>,
decltype(ClusterComp)>
SuccQueue(ClusterComp);
for (std::pair<constuint32_t, uint64_t> &Target : ClusterEdges[I]) {
if (Target.second > 0 && !(Status[Target.first] & STACKED) &&
!Clusters[Target.first].empty()) {
Parent[Target.first] = I;
Status[Target.first] = STACKED;
SuccQueue.push(Target.first);
}
}
while (!SuccQueue.empty()) {
Stack.push(SuccQueue.top());
SuccQueue.pop();
}
continue;
}
// Already visited this node
Stack.pop();
ClusterOrder.push_back(I);
}
std::reverse(ClusterOrder.begin(), ClusterOrder.end());
// Put unreachable clusters at the end
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!(Status[I] & VISITED) && !Clusters[I].empty())
ClusterOrder.push_back(I);
// Sort nodes with equal precedence
auto Beg = ClusterOrder.begin();
// Don't reorder the first cluster, which contains the function entry point
++Beg;
std::stable_sort(Beg, ClusterOrder.end(),
[&AvgFreq, &Parent](uint32_t A, uint32_t B) {
uint32_t P = Parent[A];
while (Parent[P] != 0) {
if (Parent[P] == B)
returnfalse;
P = Parent[P];
}
P = Parent[B];
while (Parent[P] != 0) {
if (Parent[P] == A)
returntrue;
P = Parent[P];
}
return AvgFreq[A] > AvgFreq[B];
});
if (opts::PrintClusters) {
errs() << "New cluster order: ";
constchar *Sep = "";
for (uint32_t O : ClusterOrder) {
errs() << Sep << O;
Sep = ", ";
}
errs() << '\n';
}
// Arrange basic blocks according to cluster order.
for (uint32_t ClusterIndex : ClusterOrder) {
ClusterAlgorithm::ClusterTy &Cluster = Clusters[ClusterIndex];
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
}
}
voidOptimizeCacheReorderAlgorithm::reorderBasicBlocks(
BinaryFunction &BF, BasicBlockOrder &Order) const {
if (BF.getLayout().block_empty())
return;
constuint64_t ColdThreshold =
opts::ColdThreshold *
(*BF.getLayout().block_begin())->getExecutionCount() / 1000;
// Cluster basic blocks.
CAlgo->clusterBasicBlocks(BF);
std::vector<ClusterAlgorithm::ClusterTy> &Clusters = CAlgo->Clusters;
// Compute clusters' average frequencies.
CAlgo->computeClusterAverageFrequency(BF.getBinaryContext());
std::vector<double> &AvgFreq = CAlgo->AvgFreq;
if (opts::PrintClusters)
CAlgo->printClusters();
// Cluster layout order
std::vector<uint32_t> ClusterOrder;
// Order clusters based on average instruction execution frequency
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!Clusters[I].empty())
ClusterOrder.push_back(I);
// Don't reorder the first cluster, which contains the function entry point
std::stable_sort(
std::next(ClusterOrder.begin()), ClusterOrder.end(),
[&AvgFreq](uint32_t A, uint32_t B) { return AvgFreq[A] > AvgFreq[B]; });
if (opts::PrintClusters) {
errs() << "New cluster order: ";
constchar *Sep = "";
for (uint32_t O : ClusterOrder) {
errs() << Sep << O;
Sep = ", ";
}
errs() << '\n';
}
// Arrange basic blocks according to cluster order.
for (uint32_t ClusterIndex : ClusterOrder) {
ClusterAlgorithm::ClusterTy &Cluster = Clusters[ClusterIndex];
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
// Force zero execution count on clusters that do not meet the cut off
// specified by --cold-threshold.
if (AvgFreq[ClusterIndex] < static_cast<double>(ColdThreshold))
for (BinaryBasicBlock *BBPtr : Cluster)
BBPtr->setExecutionCount(0);
}
}
voidReverseReorderAlgorithm::reorderBasicBlocks(BinaryFunction &BF,
BasicBlockOrder &Order) const {
if (BF.getLayout().block_empty())
return;
BinaryBasicBlock *FirstBB = *BF.getLayout().block_begin();
Order.push_back(FirstBB);
for (auto RLI = BF.getLayout().block_rbegin(); *RLI != FirstBB; ++RLI)
Order.push_back(*RLI);
}
voidRandomClusterReorderAlgorithm::reorderBasicBlocks(
BinaryFunction &BF, BasicBlockOrder &Order) const {
if (BF.getLayout().block_empty())
return;
// Cluster basic blocks.
CAlgo->clusterBasicBlocks(BF);
std::vector<ClusterAlgorithm::ClusterTy> &Clusters = CAlgo->Clusters;
if (opts::PrintClusters)
CAlgo->printClusters();
// Cluster layout order
std::vector<uint32_t> ClusterOrder;
// Order clusters based on average instruction execution frequency
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!Clusters[I].empty())
ClusterOrder.push_back(I);
std::shuffle(std::next(ClusterOrder.begin()), ClusterOrder.end(),
std::default_random_engine(opts::RandomSeed.getValue()));
if (opts::PrintClusters) {
errs() << "New cluster order: ";
constchar *Sep = "";
for (uint32_t O : ClusterOrder) {
errs() << Sep << O;
Sep = ", ";
}
errs() << '\n';
}
// Arrange basic blocks according to cluster order.
for (uint32_t ClusterIndex : ClusterOrder) {
ClusterAlgorithm::ClusterTy &Cluster = Clusters[ClusterIndex];
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
}
}