- Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathLongJmp.cpp
947 lines (819 loc) · 34.3 KB
/
LongJmp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
//===- bolt/Passes/LongJmp.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the LongJmpPass class.
//
//===----------------------------------------------------------------------===//
#include"bolt/Passes/LongJmp.h"
#include"bolt/Core/ParallelUtilities.h"
#include"llvm/Support/MathExtras.h"
#defineDEBUG_TYPE"longjmp"
usingnamespacellvm;
namespaceopts {
extern cl::OptionCategory BoltCategory;
extern cl::OptionCategory BoltOptCategory;
extern llvm::cl::opt<unsigned> AlignText;
extern cl::opt<unsigned> AlignFunctions;
extern cl::opt<bool> UseOldText;
extern cl::opt<bool> HotFunctionsAtEnd;
static cl::opt<bool>
CompactCodeModel("compact-code-model",
cl::desc("generate code for binaries <128MB on AArch64"),
cl::init(false), cl::cat(BoltCategory));
static cl::opt<bool> GroupStubs("group-stubs",
cl::desc("share stubs across functions"),
cl::init(true), cl::cat(BoltOptCategory));
}
namespacellvm {
namespacebolt {
constexprunsigned ColdFragAlign = 16;
staticvoidrelaxStubToShortJmp(BinaryBasicBlock &StubBB, const MCSymbol *Tgt) {
const BinaryContext &BC = StubBB.getFunction()->getBinaryContext();
InstructionListType Seq;
BC.MIB->createShortJmp(Seq, Tgt, BC.Ctx.get());
StubBB.clear();
StubBB.addInstructions(Seq.begin(), Seq.end());
}
staticvoidrelaxStubToLongJmp(BinaryBasicBlock &StubBB, const MCSymbol *Tgt) {
const BinaryContext &BC = StubBB.getFunction()->getBinaryContext();
InstructionListType Seq;
BC.MIB->createLongJmp(Seq, Tgt, BC.Ctx.get());
StubBB.clear();
StubBB.addInstructions(Seq.begin(), Seq.end());
}
static BinaryBasicBlock *getBBAtHotColdSplitPoint(BinaryFunction &Func) {
if (!Func.isSplit() || Func.empty())
returnnullptr;
assert(!(*Func.begin()).isCold() && "Entry cannot be cold");
for (auto I = Func.getLayout().block_begin(),
E = Func.getLayout().block_end();
I != E; ++I) {
auto Next = std::next(I);
if (Next != E && (*Next)->isCold())
return *I;
}
llvm_unreachable("No hot-cold split point found");
}
staticboolmayNeedStub(const BinaryContext &BC, const MCInst &Inst) {
return (BC.MIB->isBranch(Inst) || BC.MIB->isCall(Inst)) &&
!BC.MIB->isIndirectBranch(Inst) && !BC.MIB->isIndirectCall(Inst);
}
std::pair<std::unique_ptr<BinaryBasicBlock>, MCSymbol *>
LongJmpPass::createNewStub(BinaryBasicBlock &SourceBB, const MCSymbol *TgtSym,
bool TgtIsFunc, uint64_t AtAddress) {
BinaryFunction &Func = *SourceBB.getFunction();
const BinaryContext &BC = Func.getBinaryContext();
constbool IsCold = SourceBB.isCold();
MCSymbol *StubSym = BC.Ctx->createNamedTempSymbol("Stub");
std::unique_ptr<BinaryBasicBlock> StubBB = Func.createBasicBlock(StubSym);
MCInst Inst;
BC.MIB->createUncondBranch(Inst, TgtSym, BC.Ctx.get());
if (TgtIsFunc)
BC.MIB->convertJmpToTailCall(Inst);
StubBB->addInstruction(Inst);
StubBB->setExecutionCount(0);
// Register this in stubs maps
auto registerInMap = [&](StubGroupsTy &Map) {
StubGroupTy &StubGroup = Map[TgtSym];
StubGroup.insert(
llvm::lower_bound(
StubGroup, std::make_pair(AtAddress, nullptr),
[&](const std::pair<uint64_t, BinaryBasicBlock *> &LHS,
const std::pair<uint64_t, BinaryBasicBlock *> &RHS) {
return LHS.first < RHS.first;
}),
std::make_pair(AtAddress, StubBB.get()));
};
Stubs[&Func].insert(StubBB.get());
StubBits[StubBB.get()] = BC.MIB->getUncondBranchEncodingSize();
if (IsCold) {
registerInMap(ColdLocalStubs[&Func]);
if (opts::GroupStubs && TgtIsFunc)
registerInMap(ColdStubGroups);
++NumColdStubs;
} else {
registerInMap(HotLocalStubs[&Func]);
if (opts::GroupStubs && TgtIsFunc)
registerInMap(HotStubGroups);
++NumHotStubs;
}
returnstd::make_pair(std::move(StubBB), StubSym);
}
BinaryBasicBlock *LongJmpPass::lookupStubFromGroup(
const StubGroupsTy &StubGroups, const BinaryFunction &Func,
const MCInst &Inst, const MCSymbol *TgtSym, uint64_t DotAddress) const {
const BinaryContext &BC = Func.getBinaryContext();
auto CandidatesIter = StubGroups.find(TgtSym);
if (CandidatesIter == StubGroups.end())
returnnullptr;
const StubGroupTy &Candidates = CandidatesIter->second;
if (Candidates.empty())
returnnullptr;
auto Cand = llvm::lower_bound(
Candidates, std::make_pair(DotAddress, nullptr),
[&](const std::pair<uint64_t, BinaryBasicBlock *> &LHS,
const std::pair<uint64_t, BinaryBasicBlock *> &RHS) {
return LHS.first < RHS.first;
});
if (Cand == Candidates.end()) {
Cand = std::prev(Cand);
} elseif (Cand != Candidates.begin()) {
const StubTy *LeftCand = std::prev(Cand);
if (Cand->first - DotAddress > DotAddress - LeftCand->first)
Cand = LeftCand;
}
int BitsAvail = BC.MIB->getPCRelEncodingSize(Inst) - 1;
assert(BitsAvail < 63 && "PCRelEncodingSize is too large to use int64_t to"
"check for out-of-bounds.");
int64_t MaxVal = (1ULL << BitsAvail) - 1;
int64_t MinVal = -(1ULL << BitsAvail);
uint64_t PCRelTgtAddress = Cand->first;
int64_t PCOffset = (int64_t)(PCRelTgtAddress - DotAddress);
LLVM_DEBUG({
if (Candidates.size() > 1)
dbgs() << "Considering stub group with " << Candidates.size()
<< " candidates. DotAddress is " << Twine::utohexstr(DotAddress)
<< ", chosen candidate address is "
<< Twine::utohexstr(Cand->first) << "\n";
});
return (PCOffset < MinVal || PCOffset > MaxVal) ? nullptr : Cand->second;
}
BinaryBasicBlock *
LongJmpPass::lookupGlobalStub(const BinaryBasicBlock &SourceBB,
const MCInst &Inst, const MCSymbol *TgtSym,
uint64_t DotAddress) const {
const BinaryFunction &Func = *SourceBB.getFunction();
const StubGroupsTy &StubGroups =
SourceBB.isCold() ? ColdStubGroups : HotStubGroups;
returnlookupStubFromGroup(StubGroups, Func, Inst, TgtSym, DotAddress);
}
BinaryBasicBlock *LongJmpPass::lookupLocalStub(const BinaryBasicBlock &SourceBB,
const MCInst &Inst,
const MCSymbol *TgtSym,
uint64_t DotAddress) const {
const BinaryFunction &Func = *SourceBB.getFunction();
const DenseMap<const BinaryFunction *, StubGroupsTy> &StubGroups =
SourceBB.isCold() ? ColdLocalStubs : HotLocalStubs;
constauto Iter = StubGroups.find(&Func);
if (Iter == StubGroups.end())
returnnullptr;
returnlookupStubFromGroup(Iter->second, Func, Inst, TgtSym, DotAddress);
}
std::unique_ptr<BinaryBasicBlock>
LongJmpPass::replaceTargetWithStub(BinaryBasicBlock &BB, MCInst &Inst,
uint64_t DotAddress,
uint64_t StubCreationAddress) {
const BinaryFunction &Func = *BB.getFunction();
const BinaryContext &BC = Func.getBinaryContext();
std::unique_ptr<BinaryBasicBlock> NewBB;
const MCSymbol *TgtSym = BC.MIB->getTargetSymbol(Inst);
assert(TgtSym && "getTargetSymbol failed");
BinaryBasicBlock::BinaryBranchInfo BI{0, 0};
BinaryBasicBlock *TgtBB = BB.getSuccessor(TgtSym, BI);
auto LocalStubsIter = Stubs.find(&Func);
// If already using stub and the stub is from another function, create a local
// stub, since the foreign stub is now out of range
if (!TgtBB) {
auto SSIter = SharedStubs.find(TgtSym);
if (SSIter != SharedStubs.end()) {
TgtSym = BC.MIB->getTargetSymbol(*SSIter->second->begin());
--NumSharedStubs;
}
} elseif (LocalStubsIter != Stubs.end() &&
LocalStubsIter->second.count(TgtBB)) {
// The TgtBB and TgtSym now are the local out-of-range stub and its label.
// So, we are attempting to restore BB to its previous state without using
// this stub.
TgtSym = BC.MIB->getTargetSymbol(*TgtBB->begin());
assert(TgtSym &&
"First instruction is expected to contain a target symbol.");
BinaryBasicBlock *TgtBBSucc = TgtBB->getSuccessor(TgtSym, BI);
// TgtBB might have no successor. e.g. a stub for a function call.
if (TgtBBSucc) {
BB.replaceSuccessor(TgtBB, TgtBBSucc, BI.Count, BI.MispredictedCount);
assert(TgtBB->getExecutionCount() >= BI.Count &&
"At least equal or greater than the branch count.");
TgtBB->setExecutionCount(TgtBB->getExecutionCount() - BI.Count);
}
TgtBB = TgtBBSucc;
}
BinaryBasicBlock *StubBB = lookupLocalStub(BB, Inst, TgtSym, DotAddress);
// If not found, look it up in globally shared stub maps if it is a function
// call (TgtBB is not set)
if (!StubBB && !TgtBB) {
StubBB = lookupGlobalStub(BB, Inst, TgtSym, DotAddress);
if (StubBB) {
SharedStubs[StubBB->getLabel()] = StubBB;
++NumSharedStubs;
}
}
MCSymbol *StubSymbol = StubBB ? StubBB->getLabel() : nullptr;
if (!StubBB) {
std::tie(NewBB, StubSymbol) =
createNewStub(BB, TgtSym, /*is func?*/ !TgtBB, StubCreationAddress);
StubBB = NewBB.get();
}
// Local branch
if (TgtBB) {
uint64_t OrigCount = BI.Count;
uint64_t OrigMispreds = BI.MispredictedCount;
BB.replaceSuccessor(TgtBB, StubBB, OrigCount, OrigMispreds);
StubBB->setExecutionCount(StubBB->getExecutionCount() + OrigCount);
if (NewBB) {
StubBB->addSuccessor(TgtBB, OrigCount, OrigMispreds);
StubBB->setIsCold(BB.isCold());
}
// Call / tail call
} else {
StubBB->setExecutionCount(StubBB->getExecutionCount() +
BB.getExecutionCount());
if (NewBB) {
assert(TgtBB == nullptr);
StubBB->setIsCold(BB.isCold());
// Set as entry point because this block is valid but we have no preds
StubBB->getFunction()->addEntryPoint(*StubBB);
}
}
BC.MIB->replaceBranchTarget(Inst, StubSymbol, BC.Ctx.get());
return NewBB;
}
voidLongJmpPass::updateStubGroups() {
auto update = [&](StubGroupsTy &StubGroups) {
for (auto &KeyVal : StubGroups) {
for (StubTy &Elem : KeyVal.second)
Elem.first = BBAddresses[Elem.second];
llvm::sort(KeyVal.second, llvm::less_first());
}
};
for (auto &KeyVal : HotLocalStubs)
update(KeyVal.second);
for (auto &KeyVal : ColdLocalStubs)
update(KeyVal.second);
update(HotStubGroups);
update(ColdStubGroups);
}
voidLongJmpPass::tentativeBBLayout(const BinaryFunction &Func) {
const BinaryContext &BC = Func.getBinaryContext();
uint64_t HotDot = HotAddresses[&Func];
uint64_t ColdDot = ColdAddresses[&Func];
bool Cold = false;
for (const BinaryBasicBlock *BB : Func.getLayout().blocks()) {
if (Cold || BB->isCold()) {
Cold = true;
BBAddresses[BB] = ColdDot;
ColdDot += BC.computeCodeSize(BB->begin(), BB->end());
} else {
BBAddresses[BB] = HotDot;
HotDot += BC.computeCodeSize(BB->begin(), BB->end());
}
}
}
uint64_tLongJmpPass::tentativeLayoutRelocColdPart(
const BinaryContext &BC, std::vector<BinaryFunction *> &SortedFunctions,
uint64_t DotAddress) {
DotAddress = alignTo(DotAddress, llvm::Align(opts::AlignFunctions));
for (BinaryFunction *Func : SortedFunctions) {
if (!Func->isSplit())
continue;
DotAddress = alignTo(DotAddress, Func->getMinAlignment());
uint64_t Pad =
offsetToAlignment(DotAddress, llvm::Align(Func->getAlignment()));
if (Pad <= Func->getMaxColdAlignmentBytes())
DotAddress += Pad;
ColdAddresses[Func] = DotAddress;
LLVM_DEBUG(dbgs() << Func->getPrintName() << " cold tentative: "
<< Twine::utohexstr(DotAddress) << "\n");
DotAddress += Func->estimateColdSize();
DotAddress = alignTo(DotAddress, Func->getConstantIslandAlignment());
DotAddress += Func->estimateConstantIslandSize();
}
return DotAddress;
}
uint64_tLongJmpPass::tentativeLayoutRelocMode(
const BinaryContext &BC, std::vector<BinaryFunction *> &SortedFunctions,
uint64_t DotAddress) {
// Compute hot cold frontier
int64_t LastHotIndex = -1u;
uint32_t CurrentIndex = 0;
if (opts::HotFunctionsAtEnd) {
for (BinaryFunction *BF : SortedFunctions) {
if (BF->hasValidIndex()) {
LastHotIndex = CurrentIndex;
break;
}
++CurrentIndex;
}
} else {
for (BinaryFunction *BF : SortedFunctions) {
if (!BF->hasValidIndex()) {
LastHotIndex = CurrentIndex;
break;
}
++CurrentIndex;
}
}
// Hot
CurrentIndex = 0;
bool ColdLayoutDone = false;
auto runColdLayout = [&]() {
DotAddress = tentativeLayoutRelocColdPart(BC, SortedFunctions, DotAddress);
ColdLayoutDone = true;
if (opts::HotFunctionsAtEnd)
DotAddress = alignTo(DotAddress, opts::AlignText);
};
for (BinaryFunction *Func : SortedFunctions) {
if (!BC.shouldEmit(*Func)) {
HotAddresses[Func] = Func->getAddress();
continue;
}
if (!ColdLayoutDone && CurrentIndex >= LastHotIndex)
runColdLayout();
DotAddress = alignTo(DotAddress, Func->getMinAlignment());
uint64_t Pad =
offsetToAlignment(DotAddress, llvm::Align(Func->getAlignment()));
if (Pad <= Func->getMaxAlignmentBytes())
DotAddress += Pad;
HotAddresses[Func] = DotAddress;
LLVM_DEBUG(dbgs() << Func->getPrintName() << " tentative: "
<< Twine::utohexstr(DotAddress) << "\n");
if (!Func->isSplit())
DotAddress += Func->estimateSize();
else
DotAddress += Func->estimateHotSize();
DotAddress = alignTo(DotAddress, Func->getConstantIslandAlignment());
DotAddress += Func->estimateConstantIslandSize();
++CurrentIndex;
}
// Ensure that tentative code layout always runs for cold blocks.
if (!ColdLayoutDone)
runColdLayout();
// BBs
for (BinaryFunction *Func : SortedFunctions)
tentativeBBLayout(*Func);
return DotAddress;
}
voidLongJmpPass::tentativeLayout(
const BinaryContext &BC, std::vector<BinaryFunction *> &SortedFunctions) {
uint64_t DotAddress = BC.LayoutStartAddress;
if (!BC.HasRelocations) {
for (BinaryFunction *Func : SortedFunctions) {
HotAddresses[Func] = Func->getAddress();
DotAddress = alignTo(DotAddress, ColdFragAlign);
ColdAddresses[Func] = DotAddress;
if (Func->isSplit())
DotAddress += Func->estimateColdSize();
tentativeBBLayout(*Func);
}
return;
}
// Relocation mode
uint64_t EstimatedTextSize = 0;
if (opts::UseOldText) {
EstimatedTextSize = tentativeLayoutRelocMode(BC, SortedFunctions, 0);
// Initial padding
if (EstimatedTextSize <= BC.OldTextSectionSize) {
DotAddress = BC.OldTextSectionAddress;
uint64_t Pad =
offsetToAlignment(DotAddress, llvm::Align(opts::AlignText));
if (Pad + EstimatedTextSize <= BC.OldTextSectionSize) {
DotAddress += Pad;
}
}
}
if (!EstimatedTextSize || EstimatedTextSize > BC.OldTextSectionSize)
DotAddress = alignTo(BC.LayoutStartAddress, opts::AlignText);
tentativeLayoutRelocMode(BC, SortedFunctions, DotAddress);
}
boolLongJmpPass::usesStub(const BinaryFunction &Func,
const MCInst &Inst) const {
const MCSymbol *TgtSym = Func.getBinaryContext().MIB->getTargetSymbol(Inst);
const BinaryBasicBlock *TgtBB = Func.getBasicBlockForLabel(TgtSym);
auto Iter = Stubs.find(&Func);
if (Iter != Stubs.end())
return Iter->second.count(TgtBB);
returnfalse;
}
uint64_tLongJmpPass::getSymbolAddress(const BinaryContext &BC,
const MCSymbol *Target,
const BinaryBasicBlock *TgtBB) const {
if (TgtBB) {
auto Iter = BBAddresses.find(TgtBB);
assert(Iter != BBAddresses.end() && "Unrecognized BB");
return Iter->second;
}
uint64_t EntryID = 0;
const BinaryFunction *TargetFunc = BC.getFunctionForSymbol(Target, &EntryID);
auto Iter = HotAddresses.find(TargetFunc);
if (Iter == HotAddresses.end() || (TargetFunc && EntryID)) {
// Look at BinaryContext's resolution for this symbol - this is a symbol not
// mapped to a BinaryFunction
ErrorOr<uint64_t> ValueOrError = BC.getSymbolValue(*Target);
assert(ValueOrError && "Unrecognized symbol");
return *ValueOrError;
}
return Iter->second;
}
Error LongJmpPass::relaxStub(BinaryBasicBlock &StubBB, bool &Modified) {
const BinaryFunction &Func = *StubBB.getFunction();
const BinaryContext &BC = Func.getBinaryContext();
constint Bits = StubBits[&StubBB];
// Already working with the largest range?
if (Bits == static_cast<int>(BC.AsmInfo->getCodePointerSize() * 8))
returnError::success();
conststaticint RangeShortJmp = BC.MIB->getShortJmpEncodingSize();
conststaticint RangeSingleInstr = BC.MIB->getUncondBranchEncodingSize();
conststaticuint64_t ShortJmpMask = ~((1ULL << RangeShortJmp) - 1);
conststaticuint64_t SingleInstrMask =
~((1ULL << (RangeSingleInstr - 1)) - 1);
const MCSymbol *RealTargetSym = BC.MIB->getTargetSymbol(*StubBB.begin());
const BinaryBasicBlock *TgtBB = Func.getBasicBlockForLabel(RealTargetSym);
uint64_t TgtAddress = getSymbolAddress(BC, RealTargetSym, TgtBB);
uint64_t DotAddress = BBAddresses[&StubBB];
uint64_t PCRelTgtAddress = DotAddress > TgtAddress ? DotAddress - TgtAddress
: TgtAddress - DotAddress;
// If it fits in one instruction, do not relax
if (!(PCRelTgtAddress & SingleInstrMask))
returnError::success();
// Fits short jmp
if (!(PCRelTgtAddress & ShortJmpMask)) {
if (Bits >= RangeShortJmp)
returnError::success();
LLVM_DEBUG(dbgs() << "Relaxing stub to short jump. PCRelTgtAddress = "
<< Twine::utohexstr(PCRelTgtAddress)
<< " RealTargetSym = " << RealTargetSym->getName()
<< "\n");
relaxStubToShortJmp(StubBB, RealTargetSym);
StubBits[&StubBB] = RangeShortJmp;
Modified = true;
returnError::success();
}
// The long jmp uses absolute address on AArch64
// So we could not use it for PIC binaries
if (BC.isAArch64() && !BC.HasFixedLoadAddress)
returncreateFatalBOLTError(
"BOLT-ERROR: Unable to relax stub for PIC binary\n");
LLVM_DEBUG(dbgs() << "Relaxing stub to long jump. PCRelTgtAddress = "
<< Twine::utohexstr(PCRelTgtAddress)
<< " RealTargetSym = " << RealTargetSym->getName() << "\n");
relaxStubToLongJmp(StubBB, RealTargetSym);
StubBits[&StubBB] = static_cast<int>(BC.AsmInfo->getCodePointerSize() * 8);
Modified = true;
returnError::success();
}
boolLongJmpPass::needsStub(const BinaryBasicBlock &BB, const MCInst &Inst,
uint64_t DotAddress) const {
const BinaryFunction &Func = *BB.getFunction();
const BinaryContext &BC = Func.getBinaryContext();
const MCSymbol *TgtSym = BC.MIB->getTargetSymbol(Inst);
assert(TgtSym && "getTargetSymbol failed");
const BinaryBasicBlock *TgtBB = Func.getBasicBlockForLabel(TgtSym);
// Check for shared stubs from foreign functions
if (!TgtBB) {
auto SSIter = SharedStubs.find(TgtSym);
if (SSIter != SharedStubs.end())
TgtBB = SSIter->second;
}
int BitsAvail = BC.MIB->getPCRelEncodingSize(Inst) - 1;
assert(BitsAvail < 63 && "PCRelEncodingSize is too large to use int64_t to"
"check for out-of-bounds.");
int64_t MaxVal = (1ULL << BitsAvail) - 1;
int64_t MinVal = -(1ULL << BitsAvail);
uint64_t PCRelTgtAddress = getSymbolAddress(BC, TgtSym, TgtBB);
int64_t PCOffset = (int64_t)(PCRelTgtAddress - DotAddress);
return PCOffset < MinVal || PCOffset > MaxVal;
}
Error LongJmpPass::relax(BinaryFunction &Func, bool &Modified) {
const BinaryContext &BC = Func.getBinaryContext();
assert(BC.isAArch64() && "Unsupported arch");
constexprint InsnSize = 4; // AArch64
std::vector<std::pair<BinaryBasicBlock *, std::unique_ptr<BinaryBasicBlock>>>
Insertions;
BinaryBasicBlock *Frontier = getBBAtHotColdSplitPoint(Func);
uint64_t FrontierAddress = Frontier ? BBAddresses[Frontier] : 0;
if (FrontierAddress)
FrontierAddress += Frontier->getNumNonPseudos() * InsnSize;
// Add necessary stubs for branch targets we know we can't fit in the
// instruction
for (BinaryBasicBlock &BB : Func) {
uint64_t DotAddress = BBAddresses[&BB];
// Stubs themselves are relaxed on the next loop
if (Stubs[&Func].count(&BB))
continue;
for (MCInst &Inst : BB) {
if (BC.MIB->isPseudo(Inst))
continue;
if (!mayNeedStub(BC, Inst)) {
DotAddress += InsnSize;
continue;
}
// Check and relax direct branch or call
if (!needsStub(BB, Inst, DotAddress)) {
DotAddress += InsnSize;
continue;
}
Modified = true;
// Insert stubs close to the patched BB if call, but far away from the
// hot path if a branch, since this branch target is the cold region
// (but first check that the far away stub will be in range).
BinaryBasicBlock *InsertionPoint = &BB;
if (Func.isSimple() && !BC.MIB->isCall(Inst) && FrontierAddress &&
!BB.isCold()) {
int BitsAvail = BC.MIB->getPCRelEncodingSize(Inst) - 1;
uint64_t Mask = ~((1ULL << BitsAvail) - 1);
assert(FrontierAddress > DotAddress &&
"Hot code should be before the frontier");
uint64_t PCRelTgt = FrontierAddress - DotAddress;
if (!(PCRelTgt & Mask))
InsertionPoint = Frontier;
}
// Always put stubs at the end of the function if non-simple. We can't
// change the layout of non-simple functions because it has jump tables
// that we do not control.
if (!Func.isSimple())
InsertionPoint = &*std::prev(Func.end());
// Create a stub to handle a far-away target
Insertions.emplace_back(InsertionPoint,
replaceTargetWithStub(BB, Inst, DotAddress,
InsertionPoint == Frontier
? FrontierAddress
: DotAddress));
DotAddress += InsnSize;
}
}
// Relax stubs if necessary
for (BinaryBasicBlock &BB : Func) {
if (!Stubs[&Func].count(&BB) || !BB.isValid())
continue;
if (auto E = relaxStub(BB, Modified))
returnError(std::move(E));
}
for (std::pair<BinaryBasicBlock *, std::unique_ptr<BinaryBasicBlock>> &Elmt :
Insertions) {
if (!Elmt.second)
continue;
std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs;
NewBBs.emplace_back(std::move(Elmt.second));
Func.insertBasicBlocks(Elmt.first, std::move(NewBBs), true);
}
returnError::success();
}
voidLongJmpPass::relaxLocalBranches(BinaryFunction &BF) {
BinaryContext &BC = BF.getBinaryContext();
auto &MIB = BC.MIB;
// Quick path.
if (!BF.isSplit() && BF.estimateSize() < ShortestJumpSpan)
return;
auto isBranchOffsetInRange = [&](const MCInst &Inst, int64_t Offset) {
constunsigned Bits = MIB->getPCRelEncodingSize(Inst);
returnisIntN(Bits, Offset);
};
auto isBlockInRange = [&](const MCInst &Inst, uint64_t InstAddress,
const BinaryBasicBlock &BB) {
constint64_t Offset = BB.getOutputStartAddress() - InstAddress;
returnisBranchOffsetInRange(Inst, Offset);
};
// Keep track of *all* function trampolines that are going to be added to the
// function layout at the end of relaxation.
std::vector<std::pair<BinaryBasicBlock *, std::unique_ptr<BinaryBasicBlock>>>
FunctionTrampolines;
// Function fragments are relaxed independently.
for (FunctionFragment &FF : BF.getLayout().fragments()) {
// Fill out code size estimation for the fragment. Use output BB address
// ranges to store offsets from the start of the function fragment.
uint64_t CodeSize = 0;
for (BinaryBasicBlock *BB : FF) {
BB->setOutputStartAddress(CodeSize);
CodeSize += BB->estimateSize();
BB->setOutputEndAddress(CodeSize);
}
// Dynamically-updated size of the fragment.
uint64_t FragmentSize = CodeSize;
// Size of the trampoline in bytes.
constexpruint64_t TrampolineSize = 4;
// Trampolines created for the fragment. DestinationBB -> TrampolineBB.
// NB: here we store only the first trampoline created for DestinationBB.
DenseMap<const BinaryBasicBlock *, BinaryBasicBlock *> FragmentTrampolines;
// Create a trampoline code after \p BB or at the end of the fragment if BB
// is nullptr. If \p UpdateOffsets is true, update FragmentSize and offsets
// for basic blocks affected by the insertion of the trampoline.
auto addTrampolineAfter = [&](BinaryBasicBlock *BB,
BinaryBasicBlock *TargetBB, uint64_t Count,
bool UpdateOffsets = true) {
FunctionTrampolines.emplace_back(BB ? BB : FF.back(),
BF.createBasicBlock());
BinaryBasicBlock *TrampolineBB = FunctionTrampolines.back().second.get();
MCInst Inst;
{
auto L = BC.scopeLock();
MIB->createUncondBranch(Inst, TargetBB->getLabel(), BC.Ctx.get());
}
TrampolineBB->addInstruction(Inst);
TrampolineBB->addSuccessor(TargetBB, Count);
TrampolineBB->setExecutionCount(Count);
constuint64_t TrampolineAddress =
BB ? BB->getOutputEndAddress() : FragmentSize;
TrampolineBB->setOutputStartAddress(TrampolineAddress);
TrampolineBB->setOutputEndAddress(TrampolineAddress + TrampolineSize);
TrampolineBB->setFragmentNum(FF.getFragmentNum());
if (!FragmentTrampolines.lookup(TargetBB))
FragmentTrampolines[TargetBB] = TrampolineBB;
if (!UpdateOffsets)
return TrampolineBB;
FragmentSize += TrampolineSize;
// If the trampoline was added at the end of the fragment, offsets of
// other fragments should stay intact.
if (!BB)
return TrampolineBB;
// Update offsets for blocks after BB.
for (BinaryBasicBlock *IBB : FF) {
if (IBB->getOutputStartAddress() >= TrampolineAddress) {
IBB->setOutputStartAddress(IBB->getOutputStartAddress() +
TrampolineSize);
IBB->setOutputEndAddress(IBB->getOutputEndAddress() + TrampolineSize);
}
}
// Update offsets for trampolines in this fragment that are placed after
// the new trampoline. Note that trampoline blocks are not part of the
// function/fragment layout until we add them right before the return
// from relaxLocalBranches().
for (auto &Pair : FunctionTrampolines) {
BinaryBasicBlock *IBB = Pair.second.get();
if (IBB->getFragmentNum() != TrampolineBB->getFragmentNum())
continue;
if (IBB == TrampolineBB)
continue;
if (IBB->getOutputStartAddress() >= TrampolineAddress) {
IBB->setOutputStartAddress(IBB->getOutputStartAddress() +
TrampolineSize);
IBB->setOutputEndAddress(IBB->getOutputEndAddress() + TrampolineSize);
}
}
return TrampolineBB;
};
// Pre-populate trampolines by splitting unconditional branches from the
// containing basic block.
for (BinaryBasicBlock *BB : FF) {
MCInst *Inst = BB->getLastNonPseudoInstr();
if (!Inst || !MIB->isUnconditionalBranch(*Inst))
continue;
const MCSymbol *TargetSymbol = MIB->getTargetSymbol(*Inst);
BB->eraseInstruction(BB->findInstruction(Inst));
BB->setOutputEndAddress(BB->getOutputEndAddress() - TrampolineSize);
BinaryBasicBlock::BinaryBranchInfo BI;
BinaryBasicBlock *TargetBB = BB->getSuccessor(TargetSymbol, BI);
BinaryBasicBlock *TrampolineBB =
addTrampolineAfter(BB, TargetBB, BI.Count, /*UpdateOffsets*/false);
BB->replaceSuccessor(TargetBB, TrampolineBB, BI.Count);
}
/// Relax the branch \p Inst in basic block \p BB that targets \p TargetBB.
/// \p InstAddress contains offset of the branch from the start of the
/// containing function fragment.
auto relaxBranch = [&](BinaryBasicBlock *BB, MCInst &Inst,
uint64_t InstAddress, BinaryBasicBlock *TargetBB) {
BinaryFunction *BF = BB->getParent();
// Use branch taken count for optimal relaxation.
constuint64_t Count = BB->getBranchInfo(*TargetBB).Count;
assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
"Expected valid branch execution count");
// Try to reuse an existing trampoline without introducing any new code.
BinaryBasicBlock *TrampolineBB = FragmentTrampolines.lookup(TargetBB);
if (TrampolineBB && isBlockInRange(Inst, InstAddress, *TrampolineBB)) {
BB->replaceSuccessor(TargetBB, TrampolineBB, Count);
TrampolineBB->setExecutionCount(TrampolineBB->getExecutionCount() +
Count);
auto L = BC.scopeLock();
MIB->replaceBranchTarget(Inst, TrampolineBB->getLabel(), BC.Ctx.get());
return;
}
// For cold branches, check if we can introduce a trampoline at the end
// of the fragment that is within the branch reach. Note that such
// trampoline may change address later and become unreachable in which
// case we will need further relaxation.
constint64_t OffsetToEnd = FragmentSize - InstAddress;
if (Count == 0 && isBranchOffsetInRange(Inst, OffsetToEnd)) {
TrampolineBB = addTrampolineAfter(nullptr, TargetBB, Count);
BB->replaceSuccessor(TargetBB, TrampolineBB, Count);
auto L = BC.scopeLock();
MIB->replaceBranchTarget(Inst, TrampolineBB->getLabel(), BC.Ctx.get());
return;
}
// Insert a new block after the current one and use it as a trampoline.
TrampolineBB = addTrampolineAfter(BB, TargetBB, Count);
// If the other successor is a fall-through, invert the condition code.
const BinaryBasicBlock *const NextBB =
BF->getLayout().getBasicBlockAfter(BB, /*IgnoreSplits*/false);
if (BB->getConditionalSuccessor(false) == NextBB) {
BB->swapConditionalSuccessors();
auto L = BC.scopeLock();
MIB->reverseBranchCondition(Inst, NextBB->getLabel(), BC.Ctx.get());
} else {
auto L = BC.scopeLock();
MIB->replaceBranchTarget(Inst, TrampolineBB->getLabel(), BC.Ctx.get());
}
BB->replaceSuccessor(TargetBB, TrampolineBB, Count);
};
bool MayNeedRelaxation;
uint64_t NumIterations = 0;
do {
MayNeedRelaxation = false;
++NumIterations;
for (auto BBI = FF.begin(); BBI != FF.end(); ++BBI) {
BinaryBasicBlock *BB = *BBI;
uint64_t NextInstOffset = BB->getOutputStartAddress();
for (MCInst &Inst : *BB) {
constsize_t InstAddress = NextInstOffset;
if (!MIB->isPseudo(Inst))
NextInstOffset += 4;
if (!mayNeedStub(BF.getBinaryContext(), Inst))
continue;
constsize_t BitsAvailable = MIB->getPCRelEncodingSize(Inst);
// Span of +/-128MB.
if (BitsAvailable == LongestJumpBits)
continue;
const MCSymbol *TargetSymbol = MIB->getTargetSymbol(Inst);
BinaryBasicBlock *TargetBB = BB->getSuccessor(TargetSymbol);
assert(TargetBB &&
"Basic block target expected for conditional branch.");
// Check if the relaxation is needed.
if (TargetBB->getFragmentNum() == FF.getFragmentNum() &&
isBlockInRange(Inst, InstAddress, *TargetBB))
continue;
relaxBranch(BB, Inst, InstAddress, TargetBB);
MayNeedRelaxation = true;
}
}
// We may have added new instructions, but the whole fragment is less than
// the minimum branch span.
if (FragmentSize < ShortestJumpSpan)
MayNeedRelaxation = false;
} while (MayNeedRelaxation);
LLVM_DEBUG({
if (NumIterations > 2) {
dbgs() << "BOLT-DEBUG: relaxed fragment " << FF.getFragmentNum().get()
<< " of " << BF << " in " << NumIterations << " iterations\n";
}
});
(void)NumIterations;
}
// Add trampoline blocks from all fragments to the layout.
DenseMap<BinaryBasicBlock *, std::vector<std::unique_ptr<BinaryBasicBlock>>>
Insertions;
for (std::pair<BinaryBasicBlock *, std::unique_ptr<BinaryBasicBlock>> &Pair :
FunctionTrampolines) {
if (!Pair.second)
continue;
Insertions[Pair.first].emplace_back(std::move(Pair.second));
}
for (auto &Pair : Insertions) {
BF.insertBasicBlocks(Pair.first, std::move(Pair.second),
/*UpdateLayout*/true, /*UpdateCFI*/true,
/*RecomputeLPs*/false);
}
}
Error LongJmpPass::runOnFunctions(BinaryContext &BC) {
if (opts::CompactCodeModel) {
BC.outs()
<< "BOLT-INFO: relaxing branches for compact code model (<128MB)\n";
ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) {
relaxLocalBranches(BF);
};
ParallelUtilities::PredicateTy SkipPredicate =
[&](const BinaryFunction &BF) {
return !BC.shouldEmit(BF) || !BF.isSimple();
};
ParallelUtilities::runOnEachFunction(
BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun,
SkipPredicate, "RelaxLocalBranches");
returnError::success();
}
BC.outs() << "BOLT-INFO: Starting stub-insertion pass\n";
std::vector<BinaryFunction *> Sorted = BC.getSortedFunctions();
bool Modified;
uint32_t Iterations = 0;
do {
++Iterations;
Modified = false;
tentativeLayout(BC, Sorted);
updateStubGroups();
for (BinaryFunction *Func : Sorted) {
if (auto E = relax(*Func, Modified))
returnError(std::move(E));
// Don't ruin non-simple functions, they can't afford to have the layout
// changed.
if (Modified && Func->isSimple())
Func->fixBranches();
}
} while (Modified);
BC.outs() << "BOLT-INFO: Inserted " << NumHotStubs
<< " stubs in the hot area and " << NumColdStubs
<< " stubs in the cold area. Shared " << NumSharedStubs
<< " times, iterated " << Iterations << " times.\n";
returnError::success();
}
} // namespace bolt
} // namespace llvm