- Notifications
You must be signed in to change notification settings - Fork 13.4k
/
Copy pathCacheMetrics.cpp
281 lines (246 loc) · 10.9 KB
/
CacheMetrics.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
//===- bolt/Passes/CacheMetrics.cpp - Metrics for instruction cache -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CacheMetrics class and functions for showing metrics
// of cache lines.
//
//===----------------------------------------------------------------------===//
#include"bolt/Passes/CacheMetrics.h"
#include"bolt/Core/BinaryBasicBlock.h"
#include"bolt/Core/BinaryFunction.h"
#include<unordered_map>
usingnamespacellvm;
usingnamespacebolt;
namespace {
/// The following constants are used to estimate the number of i-TLB cache
/// misses for a given code layout. Empirically the values result in high
/// correlations between the estimations and the perf measurements.
/// The constants do not affect the code layout algorithms.
constexprunsigned ITLBPageSize = 4096;
constexprunsigned ITLBEntries = 16;
/// Initialize and return a position map for binary basic blocks
voidextractBasicBlockInfo(
const std::vector<BinaryFunction *> &BinaryFunctions,
std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
for (BinaryFunction *BF : BinaryFunctions) {
const BinaryContext &BC = BF->getBinaryContext();
for (BinaryBasicBlock &BB : *BF) {
if (BF->isSimple() || BC.HasRelocations) {
// Use addresses/sizes as in the output binary
BBAddr[&BB] = BB.getOutputAddressRange().first;
BBSize[&BB] = BB.getOutputSize();
} else {
// Output ranges should match the input if the body hasn't changed
BBAddr[&BB] = BB.getInputAddressRange().first + BF->getAddress();
BBSize[&BB] = BB.getOriginalSize();
}
}
}
}
/// Calculate TSP metric, which quantifies the number of fallthrough jumps in
/// the ordering of basic blocks. The method returns a pair
/// (the number of fallthrough branches, the total number of branches)
std::pair<uint64_t, uint64_t>
calcTSPScore(const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
uint64_t Score = 0;
uint64_t JumpCount = 0;
for (BinaryFunction *BF : BinaryFunctions) {
if (!BF->hasProfile())
continue;
for (BinaryBasicBlock *SrcBB : BF->getLayout().blocks()) {
auto BI = SrcBB->branch_info_begin();
for (BinaryBasicBlock *DstBB : SrcBB->successors()) {
if (SrcBB != DstBB && BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
JumpCount += BI->Count;
auto BBAddrIt = BBAddr.find(SrcBB);
assert(BBAddrIt != BBAddr.end());
uint64_t SrcBBAddr = BBAddrIt->second;
auto BBSizeIt = BBSize.find(SrcBB);
assert(BBSizeIt != BBSize.end());
uint64_t SrcBBSize = BBSizeIt->second;
BBAddrIt = BBAddr.find(DstBB);
assert(BBAddrIt != BBAddr.end());
uint64_t DstBBAddr = BBAddrIt->second;
if (SrcBBAddr + SrcBBSize == DstBBAddr)
Score += BI->Count;
}
++BI;
}
}
}
returnstd::make_pair(Score, JumpCount);
}
using Predecessors = std::vector<std::pair<BinaryFunction *, uint64_t>>;
/// Build a simplified version of the call graph: For every function, keep
/// its callers and the frequencies of the calls
std::unordered_map<const BinaryFunction *, Predecessors>
extractFunctionCalls(const std::vector<BinaryFunction *> &BinaryFunctions) {
std::unordered_map<const BinaryFunction *, Predecessors> Calls;
for (BinaryFunction *SrcFunction : BinaryFunctions) {
const BinaryContext &BC = SrcFunction->getBinaryContext();
for (const BinaryBasicBlock *BB : SrcFunction->getLayout().blocks()) {
// Find call instructions and extract target symbols from each one
for (const MCInst &Inst : *BB) {
if (!BC.MIB->isCall(Inst))
continue;
// Call info
const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst);
uint64_t Count = BB->getKnownExecutionCount();
// Ignore calls w/o information
if (DstSym == nullptr || Count == 0)
continue;
const BinaryFunction *DstFunction = BC.getFunctionForSymbol(DstSym);
// Ignore recursive calls
if (DstFunction == nullptr || DstFunction->getLayout().block_empty() ||
DstFunction == SrcFunction)
continue;
// Record the call
Calls[DstFunction].emplace_back(SrcFunction, Count);
}
}
}
return Calls;
}
/// Compute expected hit ratio of the i-TLB cache (optimized by HFSortPlus alg).
/// Given an assignment of functions to the i-TLB pages), we divide all
/// functions calls into two categories:
/// - 'short' ones that have a caller-callee distance less than a page;
/// - 'long' ones where the distance exceeds a page.
/// The short calls are likely to result in a i-TLB cache hit. For the long
/// ones, the hit/miss result depends on the 'hotness' of the page (i.e., how
/// often the page is accessed). Assuming that functions are sent to the i-TLB
/// cache in a random order, the probability that a page is present in the cache
/// is proportional to the number of samples corresponding to the functions on
/// the page. The following procedure detects short and long calls, and
/// estimates the expected number of cache misses for the long ones.
doubleexpectedCacheHitRatio(
const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
std::unordered_map<const BinaryFunction *, Predecessors> Calls =
extractFunctionCalls(BinaryFunctions);
// Compute 'hotness' of the functions
double TotalSamples = 0;
std::unordered_map<BinaryFunction *, double> FunctionSamples;
for (BinaryFunction *BF : BinaryFunctions) {
double Samples = 0;
for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF])
Samples += Pair.second;
Samples = std::max(Samples, (double)BF->getKnownExecutionCount());
FunctionSamples[BF] = Samples;
TotalSamples += Samples;
}
// Compute 'hotness' of the pages
std::unordered_map<uint64_t, double> PageSamples;
for (BinaryFunction *BF : BinaryFunctions) {
if (BF->getLayout().block_empty())
continue;
auto BBAddrIt = BBAddr.find(BF->getLayout().block_front());
assert(BBAddrIt != BBAddr.end());
constuint64_t Page = BBAddrIt->second / ITLBPageSize;
auto FunctionSamplesIt = FunctionSamples.find(BF);
assert(FunctionSamplesIt != FunctionSamples.end());
PageSamples[Page] += FunctionSamplesIt->second;
}
// Computing the expected number of misses for every function
double Misses = 0;
for (BinaryFunction *BF : BinaryFunctions) {
// Skip the function if it has no samples
auto FunctionSamplesIt = FunctionSamples.find(BF);
assert(FunctionSamplesIt != FunctionSamples.end());
double Samples = FunctionSamplesIt->second;
if (BF->getLayout().block_empty() || Samples == 0.0)
continue;
auto BBAddrIt = BBAddr.find(BF->getLayout().block_front());
assert(BBAddrIt != BBAddr.end());
constuint64_t Page = BBAddrIt->second / ITLBPageSize;
// The probability that the page is not present in the cache
constdouble MissProb =
pow(1.0 - PageSamples[Page] / TotalSamples, ITLBEntries);
// Processing all callers of the function
for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF]) {
BinaryFunction *SrcFunction = Pair.first;
BBAddrIt = BBAddr.find(SrcFunction->getLayout().block_front());
assert(BBAddrIt != BBAddr.end());
constuint64_t SrcPage = BBAddrIt->second / ITLBPageSize;
// Is this a 'long' or a 'short' call?
if (Page != SrcPage) {
// This is a miss
Misses += MissProb * Pair.second;
}
Samples -= Pair.second;
}
assert(Samples >= 0.0 && "Function samples computed incorrectly");
// The remaining samples likely come from the jitted code
Misses += Samples * MissProb;
}
return100.0 * (1.0 - Misses / TotalSamples);
}
} // namespace
voidCacheMetrics::printAll(raw_ostream &OS,
const std::vector<BinaryFunction *> &BFs) {
// Stats related to hot-cold code splitting
size_t NumFunctions = 0;
size_t NumProfiledFunctions = 0;
size_t NumHotFunctions = 0;
size_t NumBlocks = 0;
size_t NumHotBlocks = 0;
size_t TotalCodeMinAddr = std::numeric_limits<size_t>::max();
size_t TotalCodeMaxAddr = 0;
size_t HotCodeMinAddr = std::numeric_limits<size_t>::max();
size_t HotCodeMaxAddr = 0;
for (BinaryFunction *BF : BFs) {
NumFunctions++;
if (BF->hasProfile())
NumProfiledFunctions++;
if (BF->hasValidIndex())
NumHotFunctions++;
for (const BinaryBasicBlock &BB : *BF) {
NumBlocks++;
size_t BBAddrMin = BB.getOutputAddressRange().first;
size_t BBAddrMax = BB.getOutputAddressRange().second;
TotalCodeMinAddr = std::min(TotalCodeMinAddr, BBAddrMin);
TotalCodeMaxAddr = std::max(TotalCodeMaxAddr, BBAddrMax);
if (BF->hasValidIndex() && !BB.isCold()) {
NumHotBlocks++;
HotCodeMinAddr = std::min(HotCodeMinAddr, BBAddrMin);
HotCodeMaxAddr = std::max(HotCodeMaxAddr, BBAddrMax);
}
}
}
OS << format(" There are %zu functions;", NumFunctions)
<< format(" %zu (%.2lf%%) are in the hot section,", NumHotFunctions,
100.0 * NumHotFunctions / NumFunctions)
<< format(" %zu (%.2lf%%) have profile\n", NumProfiledFunctions,
100.0 * NumProfiledFunctions / NumFunctions);
OS << format(" There are %zu basic blocks;", NumBlocks)
<< format(" %zu (%.2lf%%) are in the hot section\n", NumHotBlocks,
100.0 * NumHotBlocks / NumBlocks);
assert(TotalCodeMinAddr <= TotalCodeMaxAddr && "incorrect output addresses");
size_t HotCodeSize = HotCodeMaxAddr - HotCodeMinAddr;
size_t TotalCodeSize = TotalCodeMaxAddr - TotalCodeMinAddr;
size_t HugePage2MB = 2 << 20;
OS << format(" Hot code takes %.2lf%% of binary (%zu bytes out of %zu, "
"%.2lf huge pages)\n",
100.0 * HotCodeSize / TotalCodeSize, HotCodeSize, TotalCodeSize,
double(HotCodeSize) / HugePage2MB);
// Stats related to expected cache performance
std::unordered_map<BinaryBasicBlock *, uint64_t> BBAddr;
std::unordered_map<BinaryBasicBlock *, uint64_t> BBSize;
extractBasicBlockInfo(BFs, BBAddr, BBSize);
OS << " Expected i-TLB cache hit ratio: "
<< format("%.2lf%%\n", expectedCacheHitRatio(BFs, BBAddr, BBSize));
auto Stats = calcTSPScore(BFs, BBAddr, BBSize);
OS << " TSP score: "
<< format("%.2lf%% (%zu out of %zu)\n",
100.0 * Stats.first / std::max<uint64_t>(Stats.second, 1),
Stats.first, Stats.second);
}