Skip to content

Latest commit

 

History

History
229 lines (167 loc) · 11.9 KB

python_api.md

File metadata and controls

229 lines (167 loc) · 11.9 KB

Python APIs

Overview

Intel® Extension for TensorFlow* provides flexible Python APIs to configure settings for different types of application scenarios.

Prerequisite: import intel_extension_for_tensorflow as itex

Python APIs and Environment Variable Names

You can easily configure and tune Intel® Extension for TensorFlow* run models using Python APIs and environment variables. We recommend Python APIs.

Python APIs and preserved environment variable Names
Python APIsDefault valueEnvironment VariablesDefault valueDefinition
itex.ConfigProtoOFF
ON
ON
OFF
OFF
ITEX_ONEDNN_GRAPH
ITEX_LAYOUT_OPT
ITEX_REMAPPER
ITEX_AUTO_MIXED_PRECISION
ITEX_SHARDING
0
1*
1
0
0
Set configuration options for specific backend type (CPU/GPU) and graph optimization.
*ITEX_LAYOUT_OPT default ON in Intel GPU (except Intel® Data Center GPU Max Series) and default OFF in Intel CPU by hardware attributes
itex.experimental_ops_overrideN/AN/AOFFCall this function to automatically override the operators with same name in TensorFlow by itex.ops.

Notes:

  1. The priority for setting values is as follows: Python APIs > Environment Variables > Default value.
  2. If pip install intel-extension-for-tensorflow[xpu], both GPU and CPU backends will be installed, the default backend will be selected by the platform device situation. If the platform with Intel GPU, the activate backend will be GPU, otherwise, CPU. If GPU backend was installed by pip install intel-extension-for-tensorflow[gpu], the backend will be GPU. If CPU backend was installed by pip install intel-extension-for-tensorflow[cpu], the backend is CPU.

Intel® Extension for TensorFlow* Config Protocol

itex.ConfigProto: ProtocolMessage for XPU configuration under different types of backends and optimization options.

enum class

enum classDescriptions
enum ITEXDataType {
DEFAULT_DATA_TYPE = 0;
FLOAT16 = 1;
BFLOAT16 = 2;
}
Datatype options of advanced auto mixed precision. You could set datatype for advanced auto mixed precision on CPUs or GPUs.
enum Toggle {
DEFAULT = 0;
ON = 1;
OFF = 2;
}
Configuration options for the graph optimizer. Unless otherwise noted, these configuration options do not apply to explicitly triggered optimization passes in the optimizers field.

Functions

itex.ConfigProto

AttributeDescription
graph_optionsGraphOptions protocolMessage, graph optimization options.

itex.GPUOptions

AttributeDescription
NoneN/A

itex.GraphOptions

AttributeDescription
onednn_graphToggle onednn_graph

Override the environment variable ITEX_ONEDNN_GRAPH. Set to enable or disable oneDNN graph(LLGA) optimization. The default value is OFF.

* If ON, will enable oneDNN graph in Intel® Extension for TensorFlow*.
* If OFF, will disable oneDNN graph in Intel® Extension for TensorFlow*.
layout_opt Toggle layout_opt

Override the environment variable ITEX_LAYOUT_OPT. Set if oneDNN layout optimization is enabled to benefit from oneDNN block format.
Enable or disable the oneDNN layout. The default value is OFF.

* If ON, will enable oneDNN layout optimization.
* If OFF, will disable oneDNN layout optimization.
remapperToggle remapper

Override the environment variable ITEX_REMAPPER. Set if remapper optimization is enabled to benefit from sub-graph fusion.
Enable or disable the remapper. The default value is ON.

* If ON, will enable remapper optimization.
* If OFF, will disable remapper optimization.
auto_mixed_precisionToggle auto_mixed_precision

Override the environment variable ITEX_AUTO_MIXED_PRECISION. Set if mixed precision is enabled to benefit from using both 16-bit and 32-bit floating-point types to accelerate modes.
Enable or disable the auto mixed precision. The default value is OFF.

* If ON, will enable auto mixed precision optimization.
* If OFF, will disable auto mixed precision optimization.
shardingToggle sharding

Currently only supports Intel GPUs with multi-tiles. Override the environment variable ITEX_SHARDING. Set if XPUAutoShard is enabled to benefit from sharding input data/graph to maximize hardware usage.
Enable or disable the XPUAutoShard. The default value is OFF.

* If ON, will enable XPUAutoShard optimization.
* If OFF, will disable XPUAutoShard optimization.

Examples:

I. Setting the options while creating the config protocol object

# TensorFlow and Intel® Extension for TensorFlow*importtensorflowastfimportintel_extension_for_tensorflowasitexgraph_opts=itex.GraphOptions(onednn_graph=itex.ON) config=itex.ConfigProto(graph_options=graph_opts) print(config)

Then the log will output the information like below.

graph_options { onednn_graph: ON }

II. Setting the options after creating the config protocol object

# TensorFlow and Intel® Extension for TensorFlow* import tensorflow as tf import intel_extension_for_tensorflow as itex config=itex.ConfigProto() config.graph_options.onednn_graph=itex.ON config.graph_options.layout_opt=itex.OFF print(config) 

Then the log will output the information like below.

graph_options { onednn_graph: ON layout_opt: OFF } 

itex.AutoMixedPrecisionOptions

ProtocolMessage for auto mixed precision optimization options.

Refer to Advanced Auto Mixed Precision.

itex.ShardingConfig

ProtocolMessage for XPUAutoShard optimization options. Currently only supports Intel GPUs with multi-tiles.

Refer to XPUAutoShard on GPU.

itex.DebugOptions

ProtocolMessage for debug options.

Python APIsEnvironment VariablesDefinition
auto_mixed_precision_log_pathITEX_AUTO_MIXED_PRECISION_LOG_PATHSave auto mixed precision "pre-optimization" and "post-optimization" graph to log path.
xpu_force_syncITEX_SYNC_EXECRun the graph with sync mode. The default value is OFF. If ON, the whole model will be run with sync mode, which will hurt performance.

itex.set_config

Set Config Protocol. Note that the protocol is a global value, so this API is not thread safe.

itex.set_config(config) 
ArgsDescription
configConfigProto object
RaisesDescription
ValueErrorIf argument validation fails.

itex.get_config

Get Config Protocol.

itex.get_config() 
RaisesDescription
ReturnsReturn the current config.

Example:

importintel_extension_for_tensorflowasitexgraph_opts=itex.GraphOptions(onednn_graph=itex.ON) config=itex.ConfigProto(graph_options=graph_opts) itex.set_config(config) print(itex.get_config())

Then the log will output the information like below:

graph_options { onednn_graph: ON } 

itex operators

itex.ops: Public API for extended XPU ops(operations) for itex.ops namespace.

For details, refer to Customized Operators.

itex ops override

itex.experimental_ops_override: Public API to override TensorFlow specific operators with same name by Customized Operators in itex.ops namespace.

For details, refer to Intel® Extension for TensorFlow* ops override.

Example:

importintel_extension_for_tensorflowasiteximporttensorflowastfitex.experimental_ops_override() print(tf.nn.gelu==itex.ops.gelu)

Then it will output the result "True".

itex graph

itex.graph: Public API for extended ITEX graph optimization operations.

N/A

itex version

itex.version: Public API for itex.version namespace.

Other MembersDescription
VERSIONThe release version. For example, 0.3.0
GIT_VERSIONThe git version. For example, v0.3.0-7112d33
ONEDNN_CPU_GIT_VERSIONThe oneDNN git version of CPU. For example, v2.5.2-a930253
ONEDNN_GPU_GIT_VERSIONThe oneDNN git version of GPU. For example, v2.5.2-a930253
COMPILER_VERSIONThe compiler version. For example, gcc-8.2.1 20180905, dpcpp-2022.1.0.122
TF_COMPATIBLE_VERSIONThe compatible TensorFlow versions. For example, tensorflow >= 2.5.0, < 2.7.0, !=2.5.3, ~=2.6

Example:

import tensorflow as tf import intel_extension_for_tensorflow as itex print(itex.__version__) print(itex.version.VERSION) print(itex.version.GIT_VERSION) if hasattr(itex.version, "ONEDNN_CPU_GIT_VERSION"): print(itex.version.ONEDNN_CPU_GIT_VERSION) # For CPU or XPU if hasattr(itex.version, "ONEDNN_GPU_GIT_VERSION"): print(itex.version.ONEDNN_GPU_GIT_VERSION) # For GPU or XPU print(itex.version.COMPILER_VERSION) print(itex.version.TF_COMPATIBLE_VERSION) 
close