- Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathunet_2d_condition_flax.py
454 lines (402 loc) · 21.8 KB
/
unet_2d_condition_flax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
fromtypingimportDict, Optional, Tuple, Union
importflax
importflax.linenasnn
importjax
importjax.numpyasjnp
fromflax.core.frozen_dictimportFrozenDict
from ...configuration_utilsimportConfigMixin, flax_register_to_config
from ...utilsimportBaseOutput
from ..embeddings_flaximportFlaxTimestepEmbedding, FlaxTimesteps
from ..modeling_flax_utilsimportFlaxModelMixin
from .unet_2d_blocks_flaximport (
FlaxCrossAttnDownBlock2D,
FlaxCrossAttnUpBlock2D,
FlaxDownBlock2D,
FlaxUNetMidBlock2DCrossAttn,
FlaxUpBlock2D,
)
@flax.struct.dataclass
classFlaxUNet2DConditionOutput(BaseOutput):
"""
The output of [`FlaxUNet2DConditionModel`].
Args:
sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`):
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
"""
sample: jnp.ndarray
@flax_register_to_config
classFlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
r"""
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
shaped output.
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it's generic methods
implemented for all models (such as downloading or saving).
This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matters related to its
general usage and behavior.
Inherent JAX features such as the following are supported:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
sample_size (`int`, *optional*):
The size of the input sample.
in_channels (`int`, *optional*, defaults to 4):
The number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 4):
The number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D")`):
The tuple of downsample blocks to use.
up_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D")`):
The tuple of upsample blocks to use.
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`. If `None`, the mid block layer
is skipped.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8):
The dimension of the attention heads.
num_attention_heads (`int` or `Tuple[int]`, *optional*):
The number of attention heads.
cross_attention_dim (`int`, *optional*, defaults to 768):
The dimension of the cross attention features.
dropout (`float`, *optional*, defaults to 0):
Dropout probability for down, up and bottleneck blocks.
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
Enable memory efficient attention as described [here](https://arxiv.org/abs/2112.05682).
split_head_dim (`bool`, *optional*, defaults to `False`):
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
"""
sample_size: int=32
in_channels: int=4
out_channels: int=4
down_block_types: Tuple[str, ...] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
up_block_types: Tuple[str, ...] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
mid_block_type: Optional[str] ="UNetMidBlock2DCrossAttn"
only_cross_attention: Union[bool, Tuple[bool]] =False
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280)
layers_per_block: int=2
attention_head_dim: Union[int, Tuple[int, ...]] =8
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] =None
cross_attention_dim: int=1280
dropout: float=0.0
use_linear_projection: bool=False
dtype: jnp.dtype=jnp.float32
flip_sin_to_cos: bool=True
freq_shift: int=0
use_memory_efficient_attention: bool=False
split_head_dim: bool=False
transformer_layers_per_block: Union[int, Tuple[int, ...]] =1
addition_embed_type: Optional[str] =None
addition_time_embed_dim: Optional[int] =None
addition_embed_type_num_heads: int=64
projection_class_embeddings_input_dim: Optional[int] =None
definit_weights(self, rng: jax.Array) ->FrozenDict:
# init input tensors
sample_shape= (1, self.in_channels, self.sample_size, self.sample_size)
sample=jnp.zeros(sample_shape, dtype=jnp.float32)
timesteps=jnp.ones((1,), dtype=jnp.int32)
encoder_hidden_states=jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32)
params_rng, dropout_rng=jax.random.split(rng)
rngs= {"params": params_rng, "dropout": dropout_rng}
added_cond_kwargs=None
ifself.addition_embed_type=="text_time":
# we retrieve the expected `text_embeds_dim` by first checking if the architecture is a refiner
# or non-refiner architecture and then by "reverse-computing" from `projection_class_embeddings_input_dim`
is_refiner= (
5*self.config.addition_time_embed_dim+self.config.cross_attention_dim
==self.config.projection_class_embeddings_input_dim
)
num_micro_conditions=5ifis_refinerelse6
text_embeds_dim=self.config.projection_class_embeddings_input_dim- (
num_micro_conditions*self.config.addition_time_embed_dim
)
time_ids_channels=self.projection_class_embeddings_input_dim-text_embeds_dim
time_ids_dims=time_ids_channels//self.addition_time_embed_dim
added_cond_kwargs= {
"text_embeds": jnp.zeros((1, text_embeds_dim), dtype=jnp.float32),
"time_ids": jnp.zeros((1, time_ids_dims), dtype=jnp.float32),
}
returnself.init(rngs, sample, timesteps, encoder_hidden_states, added_cond_kwargs)["params"]
defsetup(self) ->None:
block_out_channels=self.block_out_channels
time_embed_dim=block_out_channels[0] *4
ifself.num_attention_headsisnotNone:
raiseValueError(
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
)
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
num_attention_heads=self.num_attention_headsorself.attention_head_dim
# input
self.conv_in=nn.Conv(
block_out_channels[0],
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
# time
self.time_proj=FlaxTimesteps(
block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift
)
self.time_embedding=FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
only_cross_attention=self.only_cross_attention
ifisinstance(only_cross_attention, bool):
only_cross_attention= (only_cross_attention,) *len(self.down_block_types)
ifisinstance(num_attention_heads, int):
num_attention_heads= (num_attention_heads,) *len(self.down_block_types)
# transformer layers per block
transformer_layers_per_block=self.transformer_layers_per_block
ifisinstance(transformer_layers_per_block, int):
transformer_layers_per_block= [transformer_layers_per_block] *len(self.down_block_types)
# addition embed types
ifself.addition_embed_typeisNone:
self.add_embedding=None
elifself.addition_embed_type=="text_time":
ifself.addition_time_embed_dimisNone:
raiseValueError(
f"addition_embed_type {self.addition_embed_type} requires `addition_time_embed_dim` to not be None"
)
self.add_time_proj=FlaxTimesteps(self.addition_time_embed_dim, self.flip_sin_to_cos, self.freq_shift)
self.add_embedding=FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
else:
raiseValueError(f"addition_embed_type: {self.addition_embed_type} must be None or `text_time`.")
# down
down_blocks= []
output_channel=block_out_channels[0]
fori, down_block_typeinenumerate(self.down_block_types):
input_channel=output_channel
output_channel=block_out_channels[i]
is_final_block=i==len(block_out_channels) -1
ifdown_block_type=="CrossAttnDownBlock2D":
down_block=FlaxCrossAttnDownBlock2D(
in_channels=input_channel,
out_channels=output_channel,
dropout=self.dropout,
num_layers=self.layers_per_block,
transformer_layers_per_block=transformer_layers_per_block[i],
num_attention_heads=num_attention_heads[i],
add_downsample=notis_final_block,
use_linear_projection=self.use_linear_projection,
only_cross_attention=only_cross_attention[i],
use_memory_efficient_attention=self.use_memory_efficient_attention,
split_head_dim=self.split_head_dim,
dtype=self.dtype,
)
else:
down_block=FlaxDownBlock2D(
in_channels=input_channel,
out_channels=output_channel,
dropout=self.dropout,
num_layers=self.layers_per_block,
add_downsample=notis_final_block,
dtype=self.dtype,
)
down_blocks.append(down_block)
self.down_blocks=down_blocks
# mid
ifself.config.mid_block_type=="UNetMidBlock2DCrossAttn":
self.mid_block=FlaxUNetMidBlock2DCrossAttn(
in_channels=block_out_channels[-1],
dropout=self.dropout,
num_attention_heads=num_attention_heads[-1],
transformer_layers_per_block=transformer_layers_per_block[-1],
use_linear_projection=self.use_linear_projection,
use_memory_efficient_attention=self.use_memory_efficient_attention,
split_head_dim=self.split_head_dim,
dtype=self.dtype,
)
elifself.config.mid_block_typeisNone:
self.mid_block=None
else:
raiseValueError(f"Unexpected mid_block_type {self.config.mid_block_type}")
# up
up_blocks= []
reversed_block_out_channels=list(reversed(block_out_channels))
reversed_num_attention_heads=list(reversed(num_attention_heads))
only_cross_attention=list(reversed(only_cross_attention))
output_channel=reversed_block_out_channels[0]
reversed_transformer_layers_per_block=list(reversed(transformer_layers_per_block))
fori, up_block_typeinenumerate(self.up_block_types):
prev_output_channel=output_channel
output_channel=reversed_block_out_channels[i]
input_channel=reversed_block_out_channels[min(i+1, len(block_out_channels) -1)]
is_final_block=i==len(block_out_channels) -1
ifup_block_type=="CrossAttnUpBlock2D":
up_block=FlaxCrossAttnUpBlock2D(
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
num_layers=self.layers_per_block+1,
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
num_attention_heads=reversed_num_attention_heads[i],
add_upsample=notis_final_block,
dropout=self.dropout,
use_linear_projection=self.use_linear_projection,
only_cross_attention=only_cross_attention[i],
use_memory_efficient_attention=self.use_memory_efficient_attention,
split_head_dim=self.split_head_dim,
dtype=self.dtype,
)
else:
up_block=FlaxUpBlock2D(
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
num_layers=self.layers_per_block+1,
add_upsample=notis_final_block,
dropout=self.dropout,
dtype=self.dtype,
)
up_blocks.append(up_block)
prev_output_channel=output_channel
self.up_blocks=up_blocks
# out
self.conv_norm_out=nn.GroupNorm(num_groups=32, epsilon=1e-5)
self.conv_out=nn.Conv(
self.out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
def__call__(
self,
sample: jnp.ndarray,
timesteps: Union[jnp.ndarray, float, int],
encoder_hidden_states: jnp.ndarray,
added_cond_kwargs: Optional[Union[Dict, FrozenDict]] =None,
down_block_additional_residuals: Optional[Tuple[jnp.ndarray, ...]] =None,
mid_block_additional_residual: Optional[jnp.ndarray] =None,
return_dict: bool=True,
train: bool=False,
) ->Union[FlaxUNet2DConditionOutput, Tuple[jnp.ndarray]]:
r"""
Args:
sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor
timestep (`jnp.ndarray` or `float` or `int`): timesteps
encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states
added_cond_kwargs: (`dict`, *optional*):
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
are passed along to the UNet blocks.
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
A tuple of tensors that if specified are added to the residuals of down unet blocks.
mid_block_additional_residual: (`torch.Tensor`, *optional*):
A tensor that if specified is added to the residual of the middle unet block.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of
a plain tuple.
train (`bool`, *optional*, defaults to `False`):
Use deterministic functions and disable dropout when not training.
Returns:
[`~models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`:
[`~models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is the sample tensor.
"""
# 1. time
ifnotisinstance(timesteps, jnp.ndarray):
timesteps=jnp.array([timesteps], dtype=jnp.int32)
elifisinstance(timesteps, jnp.ndarray) andlen(timesteps.shape) ==0:
timesteps=timesteps.astype(dtype=jnp.float32)
timesteps=jnp.expand_dims(timesteps, 0)
t_emb=self.time_proj(timesteps)
t_emb=self.time_embedding(t_emb)
# additional embeddings
aug_emb=None
ifself.addition_embed_type=="text_time":
ifadded_cond_kwargsisNone:
raiseValueError(
f"Need to provide argument `added_cond_kwargs` for {self.__class__} when using `addition_embed_type={self.addition_embed_type}`"
)
text_embeds=added_cond_kwargs.get("text_embeds")
iftext_embedsisNone:
raiseValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
)
time_ids=added_cond_kwargs.get("time_ids")
iftime_idsisNone:
raiseValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
)
# compute time embeds
time_embeds=self.add_time_proj(jnp.ravel(time_ids)) # (1, 6) => (6,) => (6, 256)
time_embeds=jnp.reshape(time_embeds, (text_embeds.shape[0], -1))
add_embeds=jnp.concatenate([text_embeds, time_embeds], axis=-1)
aug_emb=self.add_embedding(add_embeds)
t_emb=t_emb+aug_embifaug_embisnotNoneelset_emb
# 2. pre-process
sample=jnp.transpose(sample, (0, 2, 3, 1))
sample=self.conv_in(sample)
# 3. down
down_block_res_samples= (sample,)
fordown_blockinself.down_blocks:
ifisinstance(down_block, FlaxCrossAttnDownBlock2D):
sample, res_samples=down_block(sample, t_emb, encoder_hidden_states, deterministic=nottrain)
else:
sample, res_samples=down_block(sample, t_emb, deterministic=nottrain)
down_block_res_samples+=res_samples
ifdown_block_additional_residualsisnotNone:
new_down_block_res_samples= ()
fordown_block_res_sample, down_block_additional_residualinzip(
down_block_res_samples, down_block_additional_residuals
):
down_block_res_sample+=down_block_additional_residual
new_down_block_res_samples+= (down_block_res_sample,)
down_block_res_samples=new_down_block_res_samples
# 4. mid
ifself.mid_blockisnotNone:
sample=self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=nottrain)
ifmid_block_additional_residualisnotNone:
sample+=mid_block_additional_residual
# 5. up
forup_blockinself.up_blocks:
res_samples=down_block_res_samples[-(self.layers_per_block+1) :]
down_block_res_samples=down_block_res_samples[: -(self.layers_per_block+1)]
ifisinstance(up_block, FlaxCrossAttnUpBlock2D):
sample=up_block(
sample,
temb=t_emb,
encoder_hidden_states=encoder_hidden_states,
res_hidden_states_tuple=res_samples,
deterministic=nottrain,
)
else:
sample=up_block(sample, temb=t_emb, res_hidden_states_tuple=res_samples, deterministic=nottrain)
# 6. post-process
sample=self.conv_norm_out(sample)
sample=nn.silu(sample)
sample=self.conv_out(sample)
sample=jnp.transpose(sample, (0, 3, 1, 2))
ifnotreturn_dict:
return (sample,)
returnFlaxUNet2DConditionOutput(sample=sample)