- Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathtest_stable_diffusion_upscale_single_file.py
87 lines (70 loc) · 3.21 KB
/
test_stable_diffusion_upscale_single_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
importgc
importunittest
importpytest
importtorch
fromdiffusersimport (
StableDiffusionUpscalePipeline,
)
fromdiffusers.utilsimportload_image
fromdiffusers.utils.testing_utilsimport (
backend_empty_cache,
enable_full_determinism,
numpy_cosine_similarity_distance,
require_torch_accelerator,
slow,
torch_device,
)
from .single_file_testing_utilsimportSDSingleFileTesterMixin
enable_full_determinism()
@slow
@require_torch_accelerator
classStableDiffusionUpscalePipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin):
pipeline_class=StableDiffusionUpscalePipeline
ckpt_path="https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/blob/main/x4-upscaler-ema.safetensors"
original_config="https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/x4-upscaling.yaml"
repo_id="stabilityai/stable-diffusion-x4-upscaler"
defsetUp(self):
super().setUp()
gc.collect()
backend_empty_cache(torch_device)
deftearDown(self):
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
deftest_single_file_format_inference_is_same_as_pretrained(self):
image=load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png"
)
prompt="a cat sitting on a park bench"
pipe=StableDiffusionUpscalePipeline.from_pretrained(self.repo_id)
pipe.enable_model_cpu_offload(device=torch_device)
generator=torch.Generator("cpu").manual_seed(0)
output=pipe(prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3)
image_from_pretrained=output.images[0]
pipe_from_single_file=StableDiffusionUpscalePipeline.from_single_file(self.ckpt_path)
pipe_from_single_file.enable_model_cpu_offload(device=torch_device)
generator=torch.Generator("cpu").manual_seed(0)
output_from_single_file=pipe_from_single_file(
prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3
)
image_from_single_file=output_from_single_file.images[0]
assertimage_from_pretrained.shape== (512, 512, 3)
assertimage_from_single_file.shape== (512, 512, 3)
assert (
numpy_cosine_similarity_distance(image_from_pretrained.flatten(), image_from_single_file.flatten()) <1e-3
)
@pytest.mark.xfail(
condition=True,
reason="Test fails because of mismatches in the configs but it is very hard to properly fix this considering downstream usecase.",
strict=True,
)
deftest_single_file_components_with_original_config(self):
super().test_single_file_components_with_original_config()
@pytest.mark.xfail(
condition=True,
reason="Test fails because of mismatches in the configs but it is very hard to properly fix this considering downstream usecase.",
strict=True,
)
deftest_single_file_components_with_original_config_local_files_only(self):
super().test_single_file_components_with_original_config_local_files_only()