- Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathtest_schedulers.py
executable file
·868 lines (683 loc) · 36.8 KB
/
test_schedulers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
importinspect
importjson
importos
importtempfile
importunittest
importuuid
fromtypingimportDict, List, Tuple
importnumpyasnp
importtorch
fromhuggingface_hubimportdelete_repo
importdiffusers
fromdiffusersimport (
CMStochasticIterativeScheduler,
DDIMScheduler,
DEISMultistepScheduler,
DiffusionPipeline,
EDMEulerScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
IPNDMScheduler,
LMSDiscreteScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
fromdiffusers.configuration_utilsimportConfigMixin, register_to_config
fromdiffusers.schedulers.scheduling_utilsimportSchedulerMixin
fromdiffusers.utilsimportlogging
fromdiffusers.utils.testing_utilsimportCaptureLogger, torch_device
from ..others.test_utilsimportTOKEN, USER, is_staging_test
torch.backends.cuda.matmul.allow_tf32=False
logger=logging.get_logger(__name__) # pylint: disable=invalid-name
classSchedulerObject(SchedulerMixin, ConfigMixin):
config_name="config.json"
@register_to_config
def__init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 3],
):
pass
classSchedulerObject2(SchedulerMixin, ConfigMixin):
config_name="config.json"
@register_to_config
def__init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
f=[1, 3],
):
pass
classSchedulerObject3(SchedulerMixin, ConfigMixin):
config_name="config.json"
@register_to_config
def__init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 3],
f=[1, 3],
):
pass
classSchedulerBaseTests(unittest.TestCase):
deftest_save_load_from_different_config(self):
obj=SchedulerObject()
# mock add obj class to `diffusers`
setattr(diffusers, "SchedulerObject", SchedulerObject)
logger=logging.get_logger("diffusers.configuration_utils")
withtempfile.TemporaryDirectory() astmpdirname:
obj.save_config(tmpdirname)
withCaptureLogger(logger) ascap_logger_1:
config=SchedulerObject2.load_config(tmpdirname)
new_obj_1=SchedulerObject2.from_config(config)
# now save a config parameter that is not expected
withopen(os.path.join(tmpdirname, SchedulerObject.config_name), "r") asf:
data=json.load(f)
data["unexpected"] =True
withopen(os.path.join(tmpdirname, SchedulerObject.config_name), "w") asf:
json.dump(data, f)
withCaptureLogger(logger) ascap_logger_2:
config=SchedulerObject.load_config(tmpdirname)
new_obj_2=SchedulerObject.from_config(config)
withCaptureLogger(logger) ascap_logger_3:
config=SchedulerObject2.load_config(tmpdirname)
new_obj_3=SchedulerObject2.from_config(config)
assertnew_obj_1.__class__==SchedulerObject2
assertnew_obj_2.__class__==SchedulerObject
assertnew_obj_3.__class__==SchedulerObject2
assertcap_logger_1.out==""
assert (
cap_logger_2.out
=="The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
" will"
" be ignored. Please verify your config.json configuration file.\n"
)
assertcap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") ==cap_logger_3.out
deftest_save_load_compatible_schedulers(self):
SchedulerObject2._compatibles= ["SchedulerObject"]
SchedulerObject._compatibles= ["SchedulerObject2"]
obj=SchedulerObject()
# mock add obj class to `diffusers`
setattr(diffusers, "SchedulerObject", SchedulerObject)
setattr(diffusers, "SchedulerObject2", SchedulerObject2)
logger=logging.get_logger("diffusers.configuration_utils")
withtempfile.TemporaryDirectory() astmpdirname:
obj.save_config(tmpdirname)
# now save a config parameter that is expected by another class, but not origin class
withopen(os.path.join(tmpdirname, SchedulerObject.config_name), "r") asf:
data=json.load(f)
data["f"] = [0, 0]
data["unexpected"] =True
withopen(os.path.join(tmpdirname, SchedulerObject.config_name), "w") asf:
json.dump(data, f)
withCaptureLogger(logger) ascap_logger:
config=SchedulerObject.load_config(tmpdirname)
new_obj=SchedulerObject.from_config(config)
assertnew_obj.__class__==SchedulerObject
assert (
cap_logger.out
=="The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
" will"
" be ignored. Please verify your config.json configuration file.\n"
)
deftest_save_load_from_different_config_comp_schedulers(self):
SchedulerObject3._compatibles= ["SchedulerObject", "SchedulerObject2"]
SchedulerObject2._compatibles= ["SchedulerObject", "SchedulerObject3"]
SchedulerObject._compatibles= ["SchedulerObject2", "SchedulerObject3"]
obj=SchedulerObject()
# mock add obj class to `diffusers`
setattr(diffusers, "SchedulerObject", SchedulerObject)
setattr(diffusers, "SchedulerObject2", SchedulerObject2)
setattr(diffusers, "SchedulerObject3", SchedulerObject3)
logger=logging.get_logger("diffusers.configuration_utils")
logger.setLevel(diffusers.logging.INFO)
withtempfile.TemporaryDirectory() astmpdirname:
obj.save_config(tmpdirname)
withCaptureLogger(logger) ascap_logger_1:
config=SchedulerObject.load_config(tmpdirname)
new_obj_1=SchedulerObject.from_config(config)
withCaptureLogger(logger) ascap_logger_2:
config=SchedulerObject2.load_config(tmpdirname)
new_obj_2=SchedulerObject2.from_config(config)
withCaptureLogger(logger) ascap_logger_3:
config=SchedulerObject3.load_config(tmpdirname)
new_obj_3=SchedulerObject3.from_config(config)
assertnew_obj_1.__class__==SchedulerObject
assertnew_obj_2.__class__==SchedulerObject2
assertnew_obj_3.__class__==SchedulerObject3
assertcap_logger_1.out==""
assertcap_logger_2.out=="{'f'} was not found in config. Values will be initialized to default values.\n"
assertcap_logger_3.out=="{'f'} was not found in config. Values will be initialized to default values.\n"
deftest_default_arguments_not_in_config(self):
pipe=DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16
)
assertpipe.scheduler.__class__==DDIMScheduler
# Default for DDIMScheduler
assertpipe.scheduler.config.timestep_spacing=="leading"
# Switch to a different one, verify we use the default for that class
pipe.scheduler=EulerDiscreteScheduler.from_config(pipe.scheduler.config)
assertpipe.scheduler.config.timestep_spacing=="linspace"
# Override with kwargs
pipe.scheduler=EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
assertpipe.scheduler.config.timestep_spacing=="trailing"
# Verify overridden kwargs stick
pipe.scheduler=LMSDiscreteScheduler.from_config(pipe.scheduler.config)
assertpipe.scheduler.config.timestep_spacing=="trailing"
# And stick
pipe.scheduler=LMSDiscreteScheduler.from_config(pipe.scheduler.config)
assertpipe.scheduler.config.timestep_spacing=="trailing"
deftest_default_solver_type_after_switch(self):
pipe=DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16
)
assertpipe.scheduler.__class__==DDIMScheduler
pipe.scheduler=DEISMultistepScheduler.from_config(pipe.scheduler.config)
assertpipe.scheduler.config.solver_type=="logrho"
# Switch to UniPC, verify the solver is the default
pipe.scheduler=UniPCMultistepScheduler.from_config(pipe.scheduler.config)
assertpipe.scheduler.config.solver_type=="bh2"
classSchedulerCommonTest(unittest.TestCase):
scheduler_classes= ()
forward_default_kwargs= ()
@property
defdefault_num_inference_steps(self):
return50
@property
defdefault_timestep(self):
kwargs=dict(self.forward_default_kwargs)
num_inference_steps=kwargs.get("num_inference_steps", self.default_num_inference_steps)
try:
scheduler_config=self.get_scheduler_config()
scheduler=self.scheduler_classes[0](**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
timestep=scheduler.timesteps[0]
exceptNotImplementedError:
logger.warning(
f"The scheduler {self.__class__.__name__} does not implement a `get_scheduler_config` method."
f" `default_timestep` will be set to the default value of 1."
)
timestep=1
returntimestep
# NOTE: currently taking the convention that default_timestep > default_timestep_2 (alternatively,
# default_timestep comes earlier in the timestep schedule than default_timestep_2)
@property
defdefault_timestep_2(self):
kwargs=dict(self.forward_default_kwargs)
num_inference_steps=kwargs.get("num_inference_steps", self.default_num_inference_steps)
try:
scheduler_config=self.get_scheduler_config()
scheduler=self.scheduler_classes[0](**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
iflen(scheduler.timesteps) >=2:
timestep_2=scheduler.timesteps[1]
else:
logger.warning(
f"Using num_inference_steps from the scheduler testing class's default config leads to a timestep"
f" scheduler of length {len(scheduler.timesteps)} < 2. The default `default_timestep_2` value of 0"
f" will be used."
)
timestep_2=0
exceptNotImplementedError:
logger.warning(
f"The scheduler {self.__class__.__name__} does not implement a `get_scheduler_config` method."
f" `default_timestep_2` will be set to the default value of 0."
)
timestep_2=0
returntimestep_2
@property
defdummy_sample(self):
batch_size=4
num_channels=3
height=8
width=8
sample=torch.rand((batch_size, num_channels, height, width))
returnsample
@property
defdummy_noise_deter(self):
batch_size=4
num_channels=3
height=8
width=8
num_elems=batch_size*num_channels*height*width
sample=torch.arange(num_elems).flip(-1)
sample=sample.reshape(num_channels, height, width, batch_size)
sample=sample/num_elems
sample=sample.permute(3, 0, 1, 2)
returnsample
@property
defdummy_sample_deter(self):
batch_size=4
num_channels=3
height=8
width=8
num_elems=batch_size*num_channels*height*width
sample=torch.arange(num_elems)
sample=sample.reshape(num_channels, height, width, batch_size)
sample=sample/num_elems
sample=sample.permute(3, 0, 1, 2)
returnsample
defget_scheduler_config(self):
raiseNotImplementedError
defdummy_model(self):
defmodel(sample, t, *args):
# if t is a tensor, match the number of dimensions of sample
ifisinstance(t, torch.Tensor):
num_dims=len(sample.shape)
# pad t with 1s to match num_dims
t=t.reshape(-1, *(1,) * (num_dims-1)).to(sample.device, dtype=sample.dtype)
returnsample*t/ (t+1)
returnmodel
defcheck_over_configs(self, time_step=0, **config):
kwargs=dict(self.forward_default_kwargs)
num_inference_steps=kwargs.pop("num_inference_steps", None)
time_step=time_stepiftime_stepisnotNoneelseself.default_timestep
forscheduler_classinself.scheduler_classes:
# TODO(Suraj) - delete the following two lines once DDPM, DDIM, and PNDM have timesteps casted to float by default
ifscheduler_classin (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
time_step=float(time_step)
scheduler_config=self.get_scheduler_config(**config)
scheduler=scheduler_class(**scheduler_config)
ifscheduler_class==CMStochasticIterativeScheduler:
# Get valid timestep based on sigma_max, which should always be in timestep schedule.
scaled_sigma_max=scheduler.sigma_to_t(scheduler.config.sigma_max)
time_step=scaled_sigma_max
ifscheduler_class==EDMEulerScheduler:
time_step=scheduler.timesteps[-1]
ifscheduler_class==VQDiffusionScheduler:
num_vec_classes=scheduler_config["num_vec_classes"]
sample=self.dummy_sample(num_vec_classes)
model=self.dummy_model(num_vec_classes)
residual=model(sample, time_step)
else:
sample=self.dummy_sample
residual=0.1*sample
withtempfile.TemporaryDirectory() astmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler=scheduler_class.from_pretrained(tmpdirname)
ifnum_inference_stepsisnotNoneandhasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
elifnum_inference_stepsisnotNoneandnothasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] =num_inference_steps
# Make sure `scale_model_input` is invoked to prevent a warning
ifscheduler_class==CMStochasticIterativeScheduler:
# Get valid timestep based on sigma_max, which should always be in timestep schedule.
_=scheduler.scale_model_input(sample, scaled_sigma_max)
_=new_scheduler.scale_model_input(sample, scaled_sigma_max)
elifscheduler_class!=VQDiffusionScheduler:
_=scheduler.scale_model_input(sample, scheduler.timesteps[-1])
_=new_scheduler.scale_model_input(sample, scheduler.timesteps[-1])
# Set the seed before step() as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if"generator"inset(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] =torch.manual_seed(0)
output=scheduler.step(residual, time_step, sample, **kwargs).prev_sample
if"generator"inset(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] =torch.manual_seed(0)
new_output=new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
asserttorch.sum(torch.abs(output-new_output)) <1e-5, "Scheduler outputs are not identical"
defcheck_over_forward(self, time_step=0, **forward_kwargs):
kwargs=dict(self.forward_default_kwargs)
kwargs.update(forward_kwargs)
num_inference_steps=kwargs.pop("num_inference_steps", None)
time_step=time_stepiftime_stepisnotNoneelseself.default_timestep
forscheduler_classinself.scheduler_classes:
ifscheduler_classin (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
time_step=float(time_step)
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config)
ifscheduler_class==VQDiffusionScheduler:
num_vec_classes=scheduler_config["num_vec_classes"]
sample=self.dummy_sample(num_vec_classes)
model=self.dummy_model(num_vec_classes)
residual=model(sample, time_step)
else:
sample=self.dummy_sample
residual=0.1*sample
withtempfile.TemporaryDirectory() astmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler=scheduler_class.from_pretrained(tmpdirname)
ifnum_inference_stepsisnotNoneandhasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
elifnum_inference_stepsisnotNoneandnothasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] =num_inference_steps
if"generator"inset(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] =torch.manual_seed(0)
output=scheduler.step(residual, time_step, sample, **kwargs).prev_sample
if"generator"inset(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] =torch.manual_seed(0)
new_output=new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
asserttorch.sum(torch.abs(output-new_output)) <1e-5, "Scheduler outputs are not identical"
deftest_from_save_pretrained(self):
kwargs=dict(self.forward_default_kwargs)
num_inference_steps=kwargs.pop("num_inference_steps", self.default_num_inference_steps)
forscheduler_classinself.scheduler_classes:
timestep=self.default_timestep
ifscheduler_classin (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
timestep=float(timestep)
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config)
ifscheduler_class==CMStochasticIterativeScheduler:
# Get valid timestep based on sigma_max, which should always be in timestep schedule.
timestep=scheduler.sigma_to_t(scheduler.config.sigma_max)
ifscheduler_class==VQDiffusionScheduler:
num_vec_classes=scheduler_config["num_vec_classes"]
sample=self.dummy_sample(num_vec_classes)
model=self.dummy_model(num_vec_classes)
residual=model(sample, timestep)
else:
sample=self.dummy_sample
residual=0.1*sample
withtempfile.TemporaryDirectory() astmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler=scheduler_class.from_pretrained(tmpdirname)
ifnum_inference_stepsisnotNoneandhasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
elifnum_inference_stepsisnotNoneandnothasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] =num_inference_steps
if"generator"inset(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] =torch.manual_seed(0)
output=scheduler.step(residual, timestep, sample, **kwargs).prev_sample
if"generator"inset(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] =torch.manual_seed(0)
new_output=new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample
asserttorch.sum(torch.abs(output-new_output)) <1e-5, "Scheduler outputs are not identical"
deftest_compatibles(self):
forscheduler_classinself.scheduler_classes:
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config)
assertall(cisnotNoneforcinscheduler.compatibles)
forcomp_scheduler_clsinscheduler.compatibles:
comp_scheduler=comp_scheduler_cls.from_config(scheduler.config)
assertcomp_schedulerisnotNone
new_scheduler=scheduler_class.from_config(comp_scheduler.config)
new_scheduler_config= {k: vfork, vinnew_scheduler.config.items() ifkinscheduler.config}
scheduler_diff= {k: vfork, vinnew_scheduler.config.items() ifknotinscheduler.config}
# make sure that configs are essentially identical
assertnew_scheduler_config==dict(scheduler.config)
# make sure that only differences are for configs that are not in init
init_keys=inspect.signature(scheduler_class.__init__).parameters.keys()
assertset(scheduler_diff.keys()).intersection(set(init_keys)) ==set()
deftest_from_pretrained(self):
forscheduler_classinself.scheduler_classes:
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config)
withtempfile.TemporaryDirectory() astmpdirname:
scheduler.save_pretrained(tmpdirname)
new_scheduler=scheduler_class.from_pretrained(tmpdirname)
# `_use_default_values` should not exist for just saved & loaded scheduler
scheduler_config=dict(scheduler.config)
delscheduler_config["_use_default_values"]
assertscheduler_config==new_scheduler.config
deftest_step_shape(self):
kwargs=dict(self.forward_default_kwargs)
num_inference_steps=kwargs.pop("num_inference_steps", self.default_num_inference_steps)
timestep_0=self.default_timestep
timestep_1=self.default_timestep_2
forscheduler_classinself.scheduler_classes:
ifscheduler_classin (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
timestep_0=float(timestep_0)
timestep_1=float(timestep_1)
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config)
ifscheduler_class==VQDiffusionScheduler:
num_vec_classes=scheduler_config["num_vec_classes"]
sample=self.dummy_sample(num_vec_classes)
model=self.dummy_model(num_vec_classes)
residual=model(sample, timestep_0)
else:
sample=self.dummy_sample
residual=0.1*sample
ifnum_inference_stepsisnotNoneandhasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elifnum_inference_stepsisnotNoneandnothasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] =num_inference_steps
output_0=scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample
output_1=scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
deftest_scheduler_outputs_equivalence(self):
defset_nan_tensor_to_zero(t):
t[t!=t] =0
returnt
defrecursive_check(tuple_object, dict_object):
ifisinstance(tuple_object, (List, Tuple)):
fortuple_iterable_value, dict_iterable_valueinzip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elifisinstance(tuple_object, Dict):
fortuple_iterable_value, dict_iterable_valueinzip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
eliftuple_objectisNone:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object-dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
kwargs=dict(self.forward_default_kwargs)
num_inference_steps=kwargs.pop("num_inference_steps", self.default_num_inference_steps)
timestep=self.default_timestep
iflen(self.scheduler_classes) >0andself.scheduler_classes[0] ==IPNDMScheduler:
timestep=1
forscheduler_classinself.scheduler_classes:
ifscheduler_classin (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
timestep=float(timestep)
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config)
ifscheduler_class==CMStochasticIterativeScheduler:
# Get valid timestep based on sigma_max, which should always be in timestep schedule.
timestep=scheduler.sigma_to_t(scheduler.config.sigma_max)
ifscheduler_class==VQDiffusionScheduler:
num_vec_classes=scheduler_config["num_vec_classes"]
sample=self.dummy_sample(num_vec_classes)
model=self.dummy_model(num_vec_classes)
residual=model(sample, timestep)
else:
sample=self.dummy_sample
residual=0.1*sample
ifnum_inference_stepsisnotNoneandhasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elifnum_inference_stepsisnotNoneandnothasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] =num_inference_steps
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if"generator"inset(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] =torch.manual_seed(0)
outputs_dict=scheduler.step(residual, timestep, sample, **kwargs)
ifnum_inference_stepsisnotNoneandhasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elifnum_inference_stepsisnotNoneandnothasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] =num_inference_steps
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if"generator"inset(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] =torch.manual_seed(0)
outputs_tuple=scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)
recursive_check(outputs_tuple, outputs_dict)
deftest_scheduler_public_api(self):
forscheduler_classinself.scheduler_classes:
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config)
ifscheduler_class!=VQDiffusionScheduler:
self.assertTrue(
hasattr(scheduler, "init_noise_sigma"),
f"{scheduler_class} does not implement a required attribute `init_noise_sigma`",
)
self.assertTrue(
hasattr(scheduler, "scale_model_input"),
(
f"{scheduler_class} does not implement a required class method `scale_model_input(sample,"
" timestep)`"
),
)
self.assertTrue(
hasattr(scheduler, "step"),
f"{scheduler_class} does not implement a required class method `step(...)`",
)
ifscheduler_class!=VQDiffusionScheduler:
sample=self.dummy_sample
ifscheduler_class==CMStochasticIterativeScheduler:
# Get valid timestep based on sigma_max, which should always be in timestep schedule.
scaled_sigma_max=scheduler.sigma_to_t(scheduler.config.sigma_max)
scaled_sample=scheduler.scale_model_input(sample, scaled_sigma_max)
elifscheduler_class==EDMEulerScheduler:
scaled_sample=scheduler.scale_model_input(sample, scheduler.timesteps[-1])
else:
scaled_sample=scheduler.scale_model_input(sample, 0.0)
self.assertEqual(sample.shape, scaled_sample.shape)
deftest_add_noise_device(self):
forscheduler_classinself.scheduler_classes:
ifscheduler_class==IPNDMScheduler:
continue
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.default_num_inference_steps)
sample=self.dummy_sample.to(torch_device)
ifscheduler_class==CMStochasticIterativeScheduler:
# Get valid timestep based on sigma_max, which should always be in timestep schedule.
scaled_sigma_max=scheduler.sigma_to_t(scheduler.config.sigma_max)
scaled_sample=scheduler.scale_model_input(sample, scaled_sigma_max)
elifscheduler_class==EDMEulerScheduler:
scaled_sample=scheduler.scale_model_input(sample, scheduler.timesteps[-1])
else:
scaled_sample=scheduler.scale_model_input(sample, 0.0)
self.assertEqual(sample.shape, scaled_sample.shape)
noise=torch.randn(scaled_sample.shape).to(torch_device)
t=scheduler.timesteps[5][None]
noised=scheduler.add_noise(scaled_sample, noise, t)
self.assertEqual(noised.shape, scaled_sample.shape)
deftest_deprecated_kwargs(self):
forscheduler_classinself.scheduler_classes:
has_kwarg_in_model_class="kwargs"ininspect.signature(scheduler_class.__init__).parameters
has_deprecated_kwarg=len(scheduler_class._deprecated_kwargs) >0
ifhas_kwarg_in_model_classandnothas_deprecated_kwarg:
raiseValueError(
f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated"
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if"
" there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
" [<deprecated_argument>]`"
)
ifnothas_kwarg_in_model_classandhas_deprecated_kwarg:
raiseValueError(
f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated"
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`"
f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the"
" deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`"
)
deftest_trained_betas(self):
forscheduler_classinself.scheduler_classes:
ifscheduler_classin (VQDiffusionScheduler, CMStochasticIterativeScheduler):
continue
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config, trained_betas=np.array([0.1, 0.3]))
withtempfile.TemporaryDirectory() astmpdirname:
scheduler.save_pretrained(tmpdirname)
new_scheduler=scheduler_class.from_pretrained(tmpdirname)
assertscheduler.betas.tolist() ==new_scheduler.betas.tolist()
deftest_getattr_is_correct(self):
forscheduler_classinself.scheduler_classes:
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config)
# save some things to test
scheduler.dummy_attribute=5
scheduler.register_to_config(test_attribute=5)
logger=logging.get_logger("diffusers.configuration_utils")
# 30 for warning
logger.setLevel(30)
withCaptureLogger(logger) ascap_logger:
asserthasattr(scheduler, "dummy_attribute")
assertgetattr(scheduler, "dummy_attribute") ==5
assertscheduler.dummy_attribute==5
# no warning should be thrown
assertcap_logger.out==""
logger=logging.get_logger("diffusers.schedulers.scheduling_utils")
# 30 for warning
logger.setLevel(30)
withCaptureLogger(logger) ascap_logger:
asserthasattr(scheduler, "save_pretrained")
fn=scheduler.save_pretrained
fn_1=getattr(scheduler, "save_pretrained")
assertfn==fn_1
# no warning should be thrown
assertcap_logger.out==""
# warning should be thrown
withself.assertWarns(FutureWarning):
assertscheduler.test_attribute==5
withself.assertWarns(FutureWarning):
assertgetattr(scheduler, "test_attribute") ==5
withself.assertRaises(AttributeError) aserror:
scheduler.does_not_exist
assertstr(error.exception) ==f"'{type(scheduler).__name__}' object has no attribute 'does_not_exist'"
@is_staging_test
classSchedulerPushToHubTester(unittest.TestCase):
identifier=uuid.uuid4()
repo_id=f"test-scheduler-{identifier}"
org_repo_id=f"valid_org/{repo_id}-org"
deftest_push_to_hub(self):
scheduler=DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
scheduler.push_to_hub(self.repo_id, token=TOKEN)
scheduler_loaded=DDIMScheduler.from_pretrained(f"{USER}/{self.repo_id}")
asserttype(scheduler) ==type(scheduler_loaded)
# Reset repo
delete_repo(token=TOKEN, repo_id=self.repo_id)
# Push to hub via save_config
withtempfile.TemporaryDirectory() astmp_dir:
scheduler.save_config(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)
scheduler_loaded=DDIMScheduler.from_pretrained(f"{USER}/{self.repo_id}")
asserttype(scheduler) ==type(scheduler_loaded)
# Reset repo
delete_repo(token=TOKEN, repo_id=self.repo_id)
deftest_push_to_hub_in_organization(self):
scheduler=DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
scheduler.push_to_hub(self.org_repo_id, token=TOKEN)
scheduler_loaded=DDIMScheduler.from_pretrained(self.org_repo_id)
asserttype(scheduler) ==type(scheduler_loaded)
# Reset repo
delete_repo(token=TOKEN, repo_id=self.org_repo_id)
# Push to hub via save_config
withtempfile.TemporaryDirectory() astmp_dir:
scheduler.save_config(tmp_dir, repo_id=self.org_repo_id, push_to_hub=True, token=TOKEN)
scheduler_loaded=DDIMScheduler.from_pretrained(self.org_repo_id)
asserttype(scheduler) ==type(scheduler_loaded)
# Reset repo
delete_repo(token=TOKEN, repo_id=self.org_repo_id)