- Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathtest_scheduler_euler_ancestral.py
156 lines (108 loc) · 5.5 KB
/
test_scheduler_euler_ancestral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
importtorch
fromdiffusersimportEulerAncestralDiscreteScheduler
fromdiffusers.utils.testing_utilsimporttorch_device
from .test_schedulersimportSchedulerCommonTest
classEulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):
scheduler_classes= (EulerAncestralDiscreteScheduler,)
num_inference_steps=10
defget_scheduler_config(self, **kwargs):
config= {
"num_train_timesteps": 1100,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**kwargs)
returnconfig
deftest_timesteps(self):
fortimestepsin [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
deftest_betas(self):
forbeta_start, beta_endinzip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
deftest_schedules(self):
forschedulein ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=schedule)
deftest_prediction_type(self):
forprediction_typein ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=prediction_type)
deftest_rescale_betas_zero_snr(self):
forrescale_betas_zero_snrin [True, False]:
self.check_over_configs(rescale_betas_zero_snr=rescale_betas_zero_snr)
deftest_full_loop_no_noise(self):
scheduler_class=self.scheduler_classes[0]
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps)
generator=torch.manual_seed(0)
model=self.dummy_model()
sample=self.dummy_sample_deter*scheduler.init_noise_sigma.cpu()
sample=sample.to(torch_device)
fori, tinenumerate(scheduler.timesteps):
sample=scheduler.scale_model_input(sample, t)
model_output=model(sample, t)
output=scheduler.step(model_output, t, sample, generator=generator)
sample=output.prev_sample
result_sum=torch.sum(torch.abs(sample))
result_mean=torch.mean(torch.abs(sample))
assertabs(result_sum.item() -152.3192) <1e-2
assertabs(result_mean.item() -0.1983) <1e-3
deftest_full_loop_with_v_prediction(self):
scheduler_class=self.scheduler_classes[0]
scheduler_config=self.get_scheduler_config(prediction_type="v_prediction")
scheduler=scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps)
generator=torch.manual_seed(0)
model=self.dummy_model()
sample=self.dummy_sample_deter*scheduler.init_noise_sigma
sample=sample.to(torch_device)
fori, tinenumerate(scheduler.timesteps):
sample=scheduler.scale_model_input(sample, t)
model_output=model(sample, t)
output=scheduler.step(model_output, t, sample, generator=generator)
sample=output.prev_sample
result_sum=torch.sum(torch.abs(sample))
result_mean=torch.mean(torch.abs(sample))
assertabs(result_sum.item() -108.4439) <1e-2
assertabs(result_mean.item() -0.1412) <1e-3
deftest_full_loop_device(self):
scheduler_class=self.scheduler_classes[0]
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
generator=torch.manual_seed(0)
model=self.dummy_model()
sample=self.dummy_sample_deter*scheduler.init_noise_sigma.cpu()
sample=sample.to(torch_device)
fortinscheduler.timesteps:
sample=scheduler.scale_model_input(sample, t)
model_output=model(sample, t)
output=scheduler.step(model_output, t, sample, generator=generator)
sample=output.prev_sample
result_sum=torch.sum(torch.abs(sample))
result_mean=torch.mean(torch.abs(sample))
assertabs(result_sum.item() -152.3192) <1e-2
assertabs(result_mean.item() -0.1983) <1e-3
deftest_full_loop_with_noise(self):
scheduler_class=self.scheduler_classes[0]
scheduler_config=self.get_scheduler_config()
scheduler=scheduler_class(**scheduler_config)
t_start=self.num_inference_steps-2
scheduler.set_timesteps(self.num_inference_steps)
generator=torch.manual_seed(0)
model=self.dummy_model()
sample=self.dummy_sample_deter*scheduler.init_noise_sigma
# add noise
noise=self.dummy_noise_deter
noise=noise.to(sample.device)
timesteps=scheduler.timesteps[t_start*scheduler.order :]
sample=scheduler.add_noise(sample, noise, timesteps[:1])
fori, tinenumerate(timesteps):
sample=scheduler.scale_model_input(sample, t)
model_output=model(sample, t)
output=scheduler.step(model_output, t, sample, generator=generator)
sample=output.prev_sample
result_sum=torch.sum(torch.abs(sample))
result_mean=torch.mean(torch.abs(sample))
assertabs(result_sum.item() -56163.0508) <1e-2, f" expected result sum 56163.0508, but get {result_sum}"
assertabs(result_mean.item() -73.1290) <1e-3, f" expected result mean 73.1290, but get {result_mean}"