- Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathtest_pipeline_flux_redux.py
151 lines (136 loc) · 4.78 KB
/
test_pipeline_flux_redux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
importgc
importunittest
importnumpyasnp
importpytest
importtorch
fromdiffusersimportFluxPipeline, FluxPriorReduxPipeline
fromdiffusers.utilsimportload_image
fromdiffusers.utils.testing_utilsimport (
Expectations,
backend_empty_cache,
numpy_cosine_similarity_distance,
require_big_accelerator,
slow,
torch_device,
)
@slow
@require_big_accelerator
@pytest.mark.big_gpu_with_torch_cuda
classFluxReduxSlowTests(unittest.TestCase):
pipeline_class=FluxPriorReduxPipeline
repo_id="black-forest-labs/FLUX.1-Redux-dev"
base_pipeline_class=FluxPipeline
base_repo_id="black-forest-labs/FLUX.1-schnell"
defsetUp(self):
super().setUp()
gc.collect()
backend_empty_cache(torch_device)
deftearDown(self):
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
defget_inputs(self, device, seed=0):
init_image=load_image(
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png"
)
return {"image": init_image}
defget_base_pipeline_inputs(self, device, seed=0):
ifstr(device).startswith("mps"):
generator=torch.manual_seed(seed)
else:
generator=torch.Generator(device="cpu").manual_seed(seed)
return {
"num_inference_steps": 2,
"guidance_scale": 2.0,
"output_type": "np",
"generator": generator,
}
deftest_flux_redux_inference(self):
pipe_redux=self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16)
pipe_base=self.base_pipeline_class.from_pretrained(
self.base_repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
)
pipe_redux.to(torch_device)
pipe_base.enable_model_cpu_offload(device=torch_device)
inputs=self.get_inputs(torch_device)
base_pipeline_inputs=self.get_base_pipeline_inputs(torch_device)
redux_pipeline_output=pipe_redux(**inputs)
image=pipe_base(**base_pipeline_inputs, **redux_pipeline_output).images[0]
image_slice=image[0, :10, :10]
expected_slices=Expectations(
{
("cuda", 7): np.array(
[
0.30078125,
0.37890625,
0.46875,
0.28125,
0.36914062,
0.47851562,
0.28515625,
0.375,
0.4765625,
0.28125,
0.375,
0.48046875,
0.27929688,
0.37695312,
0.47851562,
0.27734375,
0.38085938,
0.4765625,
0.2734375,
0.38085938,
0.47265625,
0.27539062,
0.37890625,
0.47265625,
0.27734375,
0.37695312,
0.47070312,
0.27929688,
0.37890625,
0.47460938,
],
dtype=np.float32,
),
("xpu", 3): np.array(
[
0.20507812,
0.30859375,
0.3984375,
0.18554688,
0.30078125,
0.41015625,
0.19921875,
0.3125,
0.40625,
0.19726562,
0.3125,
0.41601562,
0.19335938,
0.31445312,
0.4140625,
0.1953125,
0.3203125,
0.41796875,
0.19726562,
0.32421875,
0.41992188,
0.19726562,
0.32421875,
0.41992188,
0.20117188,
0.32421875,
0.41796875,
0.203125,
0.32617188,
0.41796875,
],
dtype=np.float32,
),
}
)
expected_slice=expected_slices.get_expectation()
max_diff=numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
assertmax_diff<1e-4