- Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathtest_image_processor.py
310 lines (250 loc) · 11 KB
/
test_image_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
importunittest
importnumpyasnp
importPIL.Image
importtorch
fromdiffusers.image_processorimportVaeImageProcessor
classImageProcessorTest(unittest.TestCase):
@property
defdummy_sample(self):
batch_size=1
num_channels=3
height=8
width=8
sample=torch.rand((batch_size, num_channels, height, width))
returnsample
@property
defdummy_mask(self):
batch_size=1
num_channels=1
height=8
width=8
sample=torch.rand((batch_size, num_channels, height, width))
returnsample
defto_np(self, image):
ifisinstance(image[0], PIL.Image.Image):
returnnp.stack([np.array(i) foriinimage], axis=0)
elifisinstance(image, torch.Tensor):
returnimage.cpu().numpy().transpose(0, 2, 3, 1)
returnimage
deftest_vae_image_processor_pt(self):
image_processor=VaeImageProcessor(do_resize=False, do_normalize=True)
input_pt=self.dummy_sample
input_np=self.to_np(input_pt)
foroutput_typein ["pt", "np", "pil"]:
out=image_processor.postprocess(
image_processor.preprocess(input_pt),
output_type=output_type,
)
out_np=self.to_np(out)
in_np= (input_np*255).round() ifoutput_type=="pil"elseinput_np
assertnp.abs(in_np-out_np).max() <1e-6, (
f"decoded output does not match input for output_type {output_type}"
)
deftest_vae_image_processor_np(self):
image_processor=VaeImageProcessor(do_resize=False, do_normalize=True)
input_np=self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1)
foroutput_typein ["pt", "np", "pil"]:
out=image_processor.postprocess(image_processor.preprocess(input_np), output_type=output_type)
out_np=self.to_np(out)
in_np= (input_np*255).round() ifoutput_type=="pil"elseinput_np
assertnp.abs(in_np-out_np).max() <1e-6, (
f"decoded output does not match input for output_type {output_type}"
)
deftest_vae_image_processor_pil(self):
image_processor=VaeImageProcessor(do_resize=False, do_normalize=True)
input_np=self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1)
input_pil=image_processor.numpy_to_pil(input_np)
foroutput_typein ["pt", "np", "pil"]:
out=image_processor.postprocess(image_processor.preprocess(input_pil), output_type=output_type)
fori, oinzip(input_pil, out):
in_np=np.array(i)
out_np=self.to_np(out) ifoutput_type=="pil"else (self.to_np(out) *255).round()
assertnp.abs(in_np-out_np).max() <1e-6, (
f"decoded output does not match input for output_type {output_type}"
)
deftest_preprocess_input_3d(self):
image_processor=VaeImageProcessor(do_resize=False, do_normalize=False)
input_pt_4d=self.dummy_sample
input_pt_3d=input_pt_4d.squeeze(0)
out_pt_4d=image_processor.postprocess(
image_processor.preprocess(input_pt_4d),
output_type="np",
)
out_pt_3d=image_processor.postprocess(
image_processor.preprocess(input_pt_3d),
output_type="np",
)
input_np_4d=self.to_np(self.dummy_sample)
input_np_3d=input_np_4d.squeeze(0)
out_np_4d=image_processor.postprocess(
image_processor.preprocess(input_np_4d),
output_type="np",
)
out_np_3d=image_processor.postprocess(
image_processor.preprocess(input_np_3d),
output_type="np",
)
assertnp.abs(out_pt_4d-out_pt_3d).max() <1e-6
assertnp.abs(out_np_4d-out_np_3d).max() <1e-6
deftest_preprocess_input_list(self):
image_processor=VaeImageProcessor(do_resize=False, do_normalize=False)
input_pt_4d=self.dummy_sample
input_pt_list=list(input_pt_4d)
out_pt_4d=image_processor.postprocess(
image_processor.preprocess(input_pt_4d),
output_type="np",
)
out_pt_list=image_processor.postprocess(
image_processor.preprocess(input_pt_list),
output_type="np",
)
input_np_4d=self.to_np(self.dummy_sample)
input_np_list=list(input_np_4d)
out_np_4d=image_processor.postprocess(
image_processor.preprocess(input_np_4d),
output_type="np",
)
out_np_list=image_processor.postprocess(
image_processor.preprocess(input_np_list),
output_type="np",
)
assertnp.abs(out_pt_4d-out_pt_list).max() <1e-6
assertnp.abs(out_np_4d-out_np_list).max() <1e-6
deftest_preprocess_input_mask_3d(self):
image_processor=VaeImageProcessor(
do_resize=False, do_normalize=False, do_binarize=True, do_convert_grayscale=True
)
input_pt_4d=self.dummy_mask
input_pt_3d=input_pt_4d.squeeze(0)
input_pt_2d=input_pt_3d.squeeze(0)
out_pt_4d=image_processor.postprocess(
image_processor.preprocess(input_pt_4d),
output_type="np",
)
out_pt_3d=image_processor.postprocess(
image_processor.preprocess(input_pt_3d),
output_type="np",
)
out_pt_2d=image_processor.postprocess(
image_processor.preprocess(input_pt_2d),
output_type="np",
)
input_np_4d=self.to_np(self.dummy_mask)
input_np_3d=input_np_4d.squeeze(0)
input_np_3d_1=input_np_4d.squeeze(-1)
input_np_2d=input_np_3d.squeeze(-1)
out_np_4d=image_processor.postprocess(
image_processor.preprocess(input_np_4d),
output_type="np",
)
out_np_3d=image_processor.postprocess(
image_processor.preprocess(input_np_3d),
output_type="np",
)
out_np_3d_1=image_processor.postprocess(
image_processor.preprocess(input_np_3d_1),
output_type="np",
)
out_np_2d=image_processor.postprocess(
image_processor.preprocess(input_np_2d),
output_type="np",
)
assertnp.abs(out_pt_4d-out_pt_3d).max() ==0
assertnp.abs(out_pt_4d-out_pt_2d).max() ==0
assertnp.abs(out_np_4d-out_np_3d).max() ==0
assertnp.abs(out_np_4d-out_np_3d_1).max() ==0
assertnp.abs(out_np_4d-out_np_2d).max() ==0
deftest_preprocess_input_mask_list(self):
image_processor=VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True)
input_pt_4d=self.dummy_mask
input_pt_3d=input_pt_4d.squeeze(0)
input_pt_2d=input_pt_3d.squeeze(0)
inputs_pt= [input_pt_4d, input_pt_3d, input_pt_2d]
inputs_pt_list= [[input_pt] forinput_ptininputs_pt]
forinput_pt, input_pt_listinzip(inputs_pt, inputs_pt_list):
out_pt=image_processor.postprocess(
image_processor.preprocess(input_pt),
output_type="np",
)
out_pt_list=image_processor.postprocess(
image_processor.preprocess(input_pt_list),
output_type="np",
)
assertnp.abs(out_pt-out_pt_list).max() <1e-6
input_np_4d=self.to_np(self.dummy_mask)
input_np_3d=input_np_4d.squeeze(0)
input_np_2d=input_np_3d.squeeze(-1)
inputs_np= [input_np_4d, input_np_3d, input_np_2d]
inputs_np_list= [[input_np] forinput_npininputs_np]
forinput_np, input_np_listinzip(inputs_np, inputs_np_list):
out_np=image_processor.postprocess(
image_processor.preprocess(input_np),
output_type="np",
)
out_np_list=image_processor.postprocess(
image_processor.preprocess(input_np_list),
output_type="np",
)
assertnp.abs(out_np-out_np_list).max() <1e-6
deftest_preprocess_input_mask_3d_batch(self):
image_processor=VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True)
# create a dummy mask input with batch_size 2
dummy_mask_batch=torch.cat([self.dummy_mask] *2, axis=0)
# squeeze out the channel dimension
input_pt_3d=dummy_mask_batch.squeeze(1)
input_np_3d=self.to_np(dummy_mask_batch).squeeze(-1)
input_pt_3d_list=list(input_pt_3d)
input_np_3d_list=list(input_np_3d)
out_pt_3d=image_processor.postprocess(
image_processor.preprocess(input_pt_3d),
output_type="np",
)
out_pt_3d_list=image_processor.postprocess(
image_processor.preprocess(input_pt_3d_list),
output_type="np",
)
assertnp.abs(out_pt_3d-out_pt_3d_list).max() <1e-6
out_np_3d=image_processor.postprocess(
image_processor.preprocess(input_np_3d),
output_type="np",
)
out_np_3d_list=image_processor.postprocess(
image_processor.preprocess(input_np_3d_list),
output_type="np",
)
assertnp.abs(out_np_3d-out_np_3d_list).max() <1e-6
deftest_vae_image_processor_resize_pt(self):
image_processor=VaeImageProcessor(do_resize=True, vae_scale_factor=1)
input_pt=self.dummy_sample
b, c, h, w=input_pt.shape
scale=2
out_pt=image_processor.resize(image=input_pt, height=h//scale, width=w//scale)
exp_pt_shape= (b, c, h//scale, w//scale)
assertout_pt.shape==exp_pt_shape, (
f"resized image output shape '{out_pt.shape}' didn't match expected shape '{exp_pt_shape}'."
)
deftest_vae_image_processor_resize_np(self):
image_processor=VaeImageProcessor(do_resize=True, vae_scale_factor=1)
input_pt=self.dummy_sample
b, c, h, w=input_pt.shape
scale=2
input_np=self.to_np(input_pt)
out_np=image_processor.resize(image=input_np, height=h//scale, width=w//scale)
exp_np_shape= (b, h//scale, w//scale, c)
assertout_np.shape==exp_np_shape, (
f"resized image output shape '{out_np.shape}' didn't match expected shape '{exp_np_shape}'."
)