- Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathconvert_vae_pt_to_diffusers.py
177 lines (142 loc) · 8.13 KB
/
convert_vae_pt_to_diffusers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
importargparse
importio
importrequests
importtorch
importyaml
fromdiffusersimportAutoencoderKL
fromdiffusers.pipelines.stable_diffusion.convert_from_ckptimport (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
fromdiffusers.utils.constantsimportDIFFUSERS_REQUEST_TIMEOUT
defcustom_convert_ldm_vae_checkpoint(checkpoint, config):
vae_state_dict=checkpoint
new_checkpoint= {}
new_checkpoint["encoder.conv_in.weight"] =vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] =vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] =vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] =vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] =vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] =vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] =vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] =vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] =vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] =vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] =vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] =vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] =vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] =vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] =vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] =vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks=len({".".join(layer.split(".")[:3]) forlayerinvae_state_dictif"encoder.down"inlayer})
down_blocks= {
layer_id: [keyforkeyinvae_state_dictiff"down.{layer_id}"inkey] forlayer_idinrange(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks=len({".".join(layer.split(".")[:3]) forlayerinvae_state_dictif"decoder.up"inlayer})
up_blocks= {
layer_id: [keyforkeyinvae_state_dictiff"up.{layer_id}"inkey] forlayer_idinrange(num_up_blocks)
}
foriinrange(num_down_blocks):
resnets= [
key
forkeyindown_blocks[i]
iff"down.{i}"inkeyandf"down.{i}.downsample"notinkeyand"attn"notinkey
]
attentions= [keyforkeyindown_blocks[i] iff"down.{i}.attn"inkey]
iff"encoder.down.{i}.downsample.conv.weight"invae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] =vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] =vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths=renew_vae_resnet_paths(resnets)
meta_path= {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
paths=renew_vae_attention_paths(attentions)
meta_path= {"old": f"down.{i}.attn", "new": f"down_blocks.{i}.attentions"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets= [keyforkeyinvae_state_dictif"encoder.mid.block"inkey]
num_mid_res_blocks=2
foriinrange(1, num_mid_res_blocks+1):
resnets= [keyforkeyinmid_resnetsiff"encoder.mid.block_{i}"inkey]
paths=renew_vae_resnet_paths(resnets)
meta_path= {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i-1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions= [keyforkeyinvae_state_dictif"encoder.mid.attn"inkey]
paths=renew_vae_attention_paths(mid_attentions)
meta_path= {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
foriinrange(num_up_blocks):
block_id=num_up_blocks-1-i
resnets= [
key
forkeyinup_blocks[block_id]
iff"up.{block_id}"inkeyandf"up.{block_id}.upsample"notinkeyand"attn"notinkey
]
attentions= [keyforkeyinup_blocks[block_id] iff"up.{block_id}.attn"inkey]
iff"decoder.up.{block_id}.upsample.conv.weight"invae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] =vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] =vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths=renew_vae_resnet_paths(resnets)
meta_path= {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
paths=renew_vae_attention_paths(attentions)
meta_path= {"old": f"up.{block_id}.attn", "new": f"up_blocks.{i}.attentions"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets= [keyforkeyinvae_state_dictif"decoder.mid.block"inkey]
num_mid_res_blocks=2
foriinrange(1, num_mid_res_blocks+1):
resnets= [keyforkeyinmid_resnetsiff"decoder.mid.block_{i}"inkey]
paths=renew_vae_resnet_paths(resnets)
meta_path= {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i-1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions= [keyforkeyinvae_state_dictif"decoder.mid.attn"inkey]
paths=renew_vae_attention_paths(mid_attentions)
meta_path= {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
returnnew_checkpoint
defvae_pt_to_vae_diffuser(
checkpoint_path: str,
output_path: str,
):
# Only support V1
r=requests.get(
" https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml",
timeout=DIFFUSERS_REQUEST_TIMEOUT,
)
io_obj=io.BytesIO(r.content)
original_config=yaml.safe_load(io_obj)
image_size=512
device="cuda"iftorch.cuda.is_available() else"cpu"
ifcheckpoint_path.endswith("safetensors"):
fromsafetensorsimportsafe_open
checkpoint= {}
withsafe_open(checkpoint_path, framework="pt", device="cpu") asf:
forkeyinf.keys():
checkpoint[key] =f.get_tensor(key)
else:
checkpoint=torch.load(checkpoint_path, map_location=device)["state_dict"]
# Convert the VAE model.
vae_config=create_vae_diffusers_config(original_config, image_size=image_size)
converted_vae_checkpoint=custom_convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae=AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
vae.save_pretrained(output_path)
if__name__=="__main__":
parser=argparse.ArgumentParser()
parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
args=parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)