- Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathconvert_lora_safetensor_to_diffusers.py
128 lines (105 loc) · 4.88 KB
/
convert_lora_safetensor_to_diffusers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# coding=utf-8
# Copyright 2024, Haofan Wang, Qixun Wang, All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Conversion script for the LoRA's safetensors checkpoints."""
importargparse
importtorch
fromsafetensors.torchimportload_file
fromdiffusersimportStableDiffusionPipeline
defconvert(base_model_path, checkpoint_path, LORA_PREFIX_UNET, LORA_PREFIX_TEXT_ENCODER, alpha):
# load base model
pipeline=StableDiffusionPipeline.from_pretrained(base_model_path, torch_dtype=torch.float32)
# load LoRA weight from .safetensors
state_dict=load_file(checkpoint_path)
visited= []
# directly update weight in diffusers model
forkeyinstate_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if".alpha"inkeyorkeyinvisited:
continue
if"text"inkey:
layer_infos=key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER+"_")[-1].split("_")
curr_layer=pipeline.text_encoder
else:
layer_infos=key.split(".")[0].split(LORA_PREFIX_UNET+"_")[-1].split("_")
curr_layer=pipeline.unet
# find the target layer
temp_name=layer_infos.pop(0)
whilelen(layer_infos) >-1:
try:
curr_layer=curr_layer.__getattr__(temp_name)
iflen(layer_infos) >0:
temp_name=layer_infos.pop(0)
eliflen(layer_infos) ==0:
break
exceptException:
iflen(temp_name) >0:
temp_name+="_"+layer_infos.pop(0)
else:
temp_name=layer_infos.pop(0)
pair_keys= []
if"lora_down"inkey:
pair_keys.append(key.replace("lora_down", "lora_up"))
pair_keys.append(key)
else:
pair_keys.append(key)
pair_keys.append(key.replace("lora_up", "lora_down"))
# update weight
iflen(state_dict[pair_keys[0]].shape) ==4:
weight_up=state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
weight_down=state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
curr_layer.weight.data+=alpha*torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
weight_up=state_dict[pair_keys[0]].to(torch.float32)
weight_down=state_dict[pair_keys[1]].to(torch.float32)
curr_layer.weight.data+=alpha*torch.mm(weight_up, weight_down)
# update visited list
foriteminpair_keys:
visited.append(item)
returnpipeline
if__name__=="__main__":
parser=argparse.ArgumentParser()
parser.add_argument(
"--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
)
parser.add_argument(
"--lora_prefix_text_encoder",
default="lora_te",
type=str,
help="The prefix of text encoder weight in safetensors",
)
parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
parser.add_argument(
"--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
)
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
args=parser.parse_args()
base_model_path=args.base_model_path
checkpoint_path=args.checkpoint_path
dump_path=args.dump_path
lora_prefix_unet=args.lora_prefix_unet
lora_prefix_text_encoder=args.lora_prefix_text_encoder
alpha=args.alpha
pipe=convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
pipe=pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)