You are given an integer array nums
sorted in non-decreasing order.
Build and return an integer array result
with the same length as nums
such that result[i]
is equal to the summation of absolute differences between nums[i]
and all the other elements in the array.
In other words, result[i]
is equal to sum(|nums[i]-nums[j]|)
where 0 <= j < nums.length
and j != i
(0-indexed).
Example 1:
Input: nums = [2,3,5] Output: [4,3,5] Explanation: Assuming the arrays are 0-indexed, then result[0] = |2-2| + |2-3| + |2-5| = 0 + 1 + 3 = 4, result[1] = |3-2| + |3-3| + |3-5| = 1 + 0 + 2 = 3, result[2] = |5-2| + |5-3| + |5-5| = 3 + 2 + 0 = 5.
Example 2:
Input: nums = [1,4,6,8,10] Output: [24,15,13,15,21]
Constraints:
2 <= nums.length <= 105
1 <= nums[i] <= nums[i + 1] <= 104
给你一个 非递减 有序整数数组 nums
。请你建立并返回一个整数数组 result
,它跟 nums
长度相同,且result[i]
等于 nums[i]
与数组中所有其他元素差的绝对值之和。换句话说, result[i]
等于 sum(|nums[i]-nums[j]|)
,其中 0 <= j < nums.length
且 j != i
(下标从 0 开始)。
- 利用前缀和思路解题。题目中说明了是有序数组,所以在计算绝对值的时候可以拆开绝对值符号。假设要计算当前
result[i]
,以i
为界,把原数组nums
分成了 3 段。nums[0 ~ i-1]
和nums[i+1 ~ n]
,前面一段nums[0 ~ i-1]
中的每个元素都比nums[i]
小,拆掉绝对值以后,sum(|nums[i]-nums[j]|) = nums[i] * i - prefixSum[0 ~ i-1]
,后面一段nums[i+1 ~ n]
中的每个元素都比nums[i]
大,拆掉绝对值以后,sum(|nums[i]-nums[j]|) = prefixSum[i+1 ~ n] - nums[i] * (n - 1 - i)
。特殊的情况,i = 0
和i = n
的情况特殊处理一下就行。
package leetcode //解法一 优化版 prefixSum + sufixSumfuncgetSumAbsoluteDifferences(nums []int) []int { size:=len(nums) sufixSum:=make([]int, size) sufixSum[size-1] =nums[size-1] fori:=size-2; i>=0; i-- { sufixSum[i] =sufixSum[i+1] +nums[i] } ans, preSum:=make([]int, size), 0fori:=0; i<size; i++ { // 后面可以加到的值res, sum:=0, sufixSum[i]-nums[i] res+= (sum- (size-i-1)*nums[i]) // 前面可以加到的值res+= (i*nums[i] -preSum) ans[i] =respreSum+=nums[i] } returnans } // 解法二 prefixSumfuncgetSumAbsoluteDifferences1(nums []int) []int { preSum, res, sum:= []int{}, []int{}, nums[0] preSum=append(preSum, nums[0]) fori:=1; i<len(nums); i++ { sum+=nums[i] preSum=append(preSum, sum) } fori:=0; i<len(nums); i++ { ifi==0 { res=append(res, preSum[len(nums)-1]-preSum[0]-nums[i]*(len(nums)-1)) } elseifi>0&&i<len(nums)-1 { res=append(res, preSum[len(nums)-1]-preSum[i]-preSum[i-1]+nums[i]*i-nums[i]*(len(nums)-1-i)) } else { res=append(res, nums[i]*len(nums)-preSum[len(nums)-1]) } } returnres }