Given the array arr
of positive integers and the array queries
where queries[i] = [Li,Ri]
, for each query i
compute the XOR of elements from Li
to Ri
(that is, arr[Li]xor arr[Li+1]xor ...xor arr[Ri]
). Return an array containing the result for the given queries
.
Example 1:
Input: arr = [1,3,4,8], queries = [[0,1],[1,2],[0,3],[3,3]] Output: [2,7,14,8] Explanation: The binary representation of the elements in the array are: 1 = 0001 3 = 0011 4 = 0100 8 = 1000 The XOR values for queries are: [0,1] = 1 xor 3 = 2 [1,2] = 3 xor 4 = 7 [0,3] = 1 xor 3 xor 4 xor 8 = 14 [3,3] = 8
Example 2:
Input: arr = [4,8,2,10], queries = [[2,3],[1,3],[0,0],[0,3]] Output: [8,0,4,4]
Constraints:
1 <= arr.length <= 3 * 10^4
1 <= arr[i] <= 10^9
1 <= queries.length <= 3 * 10^4
queries[i].length == 2
0 <= queries[i][0] <= queries[i][1] < arr.length
有一个正整数数组 arr,现给你一个对应的查询数组 queries,其中 queries[i] = [Li, Ri]。对于每个查询 i,请你计算从 Li 到 Ri 的 XOR 值(即 arr[Li] xor arr[Li+1] xor ... xor arr[Ri])作为本次查询的结果。并返回一个包含给定查询 queries 所有结果的数组。
此题求区间异或,很容易让人联想到区间求和。区间求和利用前缀和,可以使得 query 从 O(n) 降为 O(1)。区间异或能否也用类似前缀和的思想呢?答案是肯定的。利用异或的两个性质,x ^ x = 0,x ^ 0 = x。那么有:(由于 LaTeX 中异或符号 ^ 是特殊字符,笔者用
$\oplus$ 代替异或)$$\begin{aligned}Query(left,right) &=arr[left] \oplus \cdots \oplus arr[right]\&=(arr[0] \oplus \cdots \oplus arr[left-1]) \oplus (arr[0] \oplus \cdots \oplus arr[left-1]) \oplus (arr[left] \oplus \cdots \oplus arr[right])\ &=(arr[0] \oplus \cdots \oplus arr[left-1]) \oplus (arr[0] \oplus \cdots \oplus arr[right])\ &=xors[left] \oplus xors[right+1]\ \end{aligned}$$
按照这个思路解题,便可以将 query 从 O(n) 降为 O(1),总的时间复杂度为 O(n)。
package leetcode funcxorQueries(arr []int, queries [][]int) []int { xors:=make([]int, len(arr)) xors[0] =arr[0] fori:=1; i<len(arr); i++ { xors[i] =arr[i] ^xors[i-1] } res:=make([]int, len(queries)) fori, q:=rangequeries { res[i] =xors[q[1]] ifq[0] >0 { res[i] ^=xors[q[0]-1] } } returnres }